Profiling the FreeBSD kernel boot

From hammer_time to start_init

Colin Percival
Tarsnap Backup Inc.
cperciva@tarsnap.com

March 10, 2018

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why profile the FreeBSD kernel boot?

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why did I profile the FreeBSD kernel boot?

@ In June 2017 | bought a new laptop.

@ Unlike many FreeBSD developers, | insist on running FreeBSD
on my laptops.

@ Video driver support in laptops has traditionally been
problematic.

1. Load the i915kms.ko kernel module.

Read the panic message.

Reboot.

Try changing some code.

Recompile the kernel module.

6. GOTO 1

@ Hundreds and hundreds of attempts.

Gk wn

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why did I profile the FreeBSD kernel boot?

Around reboot number 100 | started to notice things.

Text scrolls by as the kernel initializes itself and probes
devices, but sometimes the scrolling stops for a while.

(]

| started wondering what the kernel was doing during these
“pauses” .

(]

Make educated guesses and sprinkle
printf("%1lu\n", rdtsc());

Initializing the vm_page array. (20 ms / GB RAM)
Calibrating the CPU clock frequency. (1.0 s)
Calibrating the local APIC timer. (1.0 s)

Probing and initializing psm0. (2.0 s)

¢ ¢ ¢ @

(]

| realized that having a systematic way of measuring
everything would be much better than annotating functions
only when | became suspicious.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

FreeBSD boot process

BIOS / EFI

FreeBSD boot loader(s)
FreeBSD kernel initialization

s Machine-dependent initialization (e.g., hammer_time)
o mi_startup
@ start_init (including vfs mountroot).

¢ ©

FreeBSD userland initialization

(]

@ rc.d scripts

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

FreeBSD boot process

BIOS / EFI

FreeBSD boot loader(s)
FreeBSD kernel initialization < I'm looking at this.

s Machine-dependent initialization (e.g., hammer_time)
o mi_startup
@ start_init (including vfs mountroot).

¢ ©

FreeBSD userland initialization

(]

@ rc.d scripts

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Linux boot profiling

@ Linux prints a timestamp at the start of each line of kernel
output.

2.082829] ACPI: Power Button [PWRF]
2.085704] input: Sleep Button as /devices/LNX...
2.092002] ACPI: Sleep Button [SLPF]
2.166920] input: ImExPS/2 Generic Explorer Mo...
2.302339] mousedev: PS/2 mouse device common ...

L I e I e I e B |

@ This can make it very easy for users to notice if part of the
kernel boot is taking a long time.

@ Timestamping kernel log messages means that you only get
timestamps when the kernel is printing log messages — not
always the most useful moments.

@ At the beginning of the Linux boot, all the timestamps logged
are 0.000000 because the clocks aren't initialized yet —
better to record raw CPU cycle count numbers and then
translate them later.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

@ DTrace is the way to profile anything and everything in
FreeBSD!

@ However, DTrace needs:

Traps

Memory allocation

Thread scheduling
probably lots more...

¢ € ¢ ¢

@ A large part of what we want to profile happens before any of
these basic kernel subroutines are available.

@ We need to use something which is simpler and with fewer
dependencies.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

KTR

@ KTR is a mechanism for logging “kernel events”

@ You call a function; it logs whatever you give it into a buffer.
@ Almost exactly what | needed, but...

@ It uses a circular buffer — good for answering “what happened

just before we crashed” but bad for answering “what happened
at the start of the boot process”.

o lts default buffer size is only 1024 records — we will need far
more than this.

@ It can’t quite run at the start of the boot process.
@ All of these limitations could be worked around with a few

lines of changes, but it was simpler to add a new subroutine

for logging timestamped events which was designed for boot
profiling.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com

Profiling the FreeBSD kernel boot

@ sys/tslog.h and kern/kern_tslog.c implement the
TSLOG framework.

o Buffer fixed at compile time (default 256k records).

@ To log an record, we atomically reserve a slot, then populate
it with the appropriate data.

@ When the buffer is full, future records are silently discarded.

@ Each record consists of a cycle count, a thread ID, a record
type, and one or two strings.

@ Records are logged via TS* macros, which compile to nothing
for kernels compiled without the TSLOG option.

@ The buffer is dumped to userland via the debug.tslog sysctl.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Function tracing

(]

We can figure out most of what we want to know by knowing
when we entered and exited functions.

TSENTER () records that we have entered a function.
TSEXIT() records that we are about to exit a function.

Scatter these through the tree in potentially useful places!

e © ¢ ¢

Top level of the boot process: hammer_time, mi_startup,
start_init.

Functions which get called a lot: DELAY(), _vprintf.
SYSINIT routines.

DEVICE_PROBE and DEVICE_ATTACH functions.
VFS_MOUNT calls.

e © ¢ ¢

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Annotating a function

void
DELAY (int n)
{
TSENTERQ) ;
if (delay_tc(n)) {
TSEXITQ);
return;
}
init_ops.early_delay(n);
TSEXITQ);
}

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

SYSINIT

@ SYSINITs are a mechanism used by FreeBSD to specify that
code should be run during the kernel startup process.

SYSINIT (name, orderl, order2, function, cookie);
@ Similar to Linux initcalls.

@ A record is created in a special ELF section, and linker magic
makes it possible to get a list of all the SYSINITs declared all
over the kernel.

@ mi_startup sorts the SYSINIT functions and calls them in
the appropriate order.

@ With the TSLOG kernel option, we redefine the SYSINIT
macro to call a shim function which logs the entry/exit.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

SYSINIT

#ifdef TSLOG
struct sysinit_tslog {
sysinit_cfunc_t func;
const void * data;
const char * name;
};
static inline void
sysinit_tslog_shim(const void * data)

{
const struct sysinit_tslog * x = data;
TSRAW (curthread, TS_ENTER, "SYSINIT", x->name);
(x->func) (x->data) ;
TSRAW(curthread, TS_EXIT, "SYSINIT", x->name);
}

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

DEVICE PROBE and DEVICE_ATTACH

@ The configure2 SYSINIT function recurses through the
attached buses looking for devices.

@ As the names suggest, DEVICE PROBE is used to probe
devices, and DEVICE_ATTACH is used to attach devices once
they are found.

@ Drivers declare their probe and attach methods via the
DEVMETHOD macro.

@ Yes, the FreeBSD kernel is object-oriented! See kobj(9).

@ DEVICE_* are inline functions defined in device_if.h, which
is generated at build-time from device_if .m.

@ Generic object method dispatch code: Look up the function
pointer, then call it.

o | taught makeobjops.awk to add prologues and epilogues to
the generated code, then annotated device_ if.m.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

VFS_MOUNT

#define VFS_MOUNT(MP) ({
int _rc;

TSRAW (curthread, TS_ENTER, "VFS_MOUNT",
(MP) ->mnt_vfc->vfc_name) ;

VFS_PROLOGUE (MP) ;

_rc = (x(MP)->mnt_op->vfs_mount) (MP) ;

VFS_EPILOGUE(MP) ;

TSRAW (curthread, TS_EXIT, "VFS_MOUNT",
(MP) ->mnt_vfc->vfc_name) ;

_rc; 1)

P A A A

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Boot holds

@ Tracing function entry/exit points tells us what each kernel
thread is doing at any given time.

(]

Once the kernel is running multiple threads, we need a bit
more than this — sometimes one thread will wait for another.

@ The intr_config hooks SYSINIT waits for hooks which
were established via config_intrhook_establish.

® The g_waitidle function waits for the GEOM event queue to
be empty.

(]

The vfs_mountroot_wait function waits for holds registered
via root_mount_hold.

Extracting information from the kernel scheduler might help
here, but that gets complicated fast.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Boot holds

Much simpler: Annotate the places where the “main thread”
is blocked waiting for other threads to finish something.

@ Record the start and end of “waits”, and when “holds” are
acquired and released.
@ Record the identity of newly created kernel threads.

@ Heuristic: Blame “blocked” time on whatever thread was the
last one to release a hold, for as long as that thread held it.

@ Heuristic: Assume the thread was blocking the boot process
starting at the latest of when it picked up a hold and when
the thread was created.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Visualization

@ After booting, dump all of the logged records.

@ Organize them into threads and use entry/exit records to
construct timestamped stacks.

The “kernel boot process” is thread0 (aka. swapper) plus
init prior to when it enters userland.

(]

Where a boot hold occurs, identify the thread which we're
waiting for and splice its stacks on top.

@ Now we have a series of stacks covering the kernel boot
process.

Obvious visualization tool: Flame Graphs.

Unfortunately Flame Graphs sort stacks in alphabetical order...

Flame Charts are like Flame Graphs but keep the stacks in
chronological order.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

My laptop:

T
. [DECAYII
I DE: DEVICE_PROBE psrf
DE . DEVICE_ATTACH s
THREAD g_event (THREAIS
n

DEvICE ATTACHE®DI

[DEEAYAN | DEVICE_ATTACH nexus | DELAY .-vfs,muunmut,wam

BEEAYY SYSINITio| SYSINIT configure? 11 SYSINT.. S TS IGUNEGOES
i m_startup T
kernel
-]

Amazon EC2 c5.4xlarge:

Flame Chart

(-]
EVIC

_vp. [EEIDEVICE_ATT.. BEEAY"
DEICES DEVICE ATTACH pemeariy

it

1 DEVICE ATTACH neus

%

—nsvsx |SYSINIT cpu SN SYSINTIN 1

é

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Where's the time going?

@ hammer_time DELAY: 640 ms.

@ SYSINIT vmmem: ~ 20 ms / GB RAM.

@ SYSINIT cpu DELAY: 1000 ms.

@ SYSINIT start_aps: 3 ms on my laptop, 800 ms in EC2.

@ DEVICE PROBE hpt*: 320 ms.

@ DEVICE_PROBE psm: 2000 ms on my laptop, 1500 ms in EC2.

@ SYSINIT clocks DELAY: 1000 ms.

@ THREAD g_event: 2600 ms on my laptop — GELI key
derivation.

@ THREAD usbusO: 9000 ms on my laptop — root mount

waiting for usbus0.

_vprintf: 720 ms on my laptop, 4000 ms in EC2.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Where's the time going?

e ¢ © ¢ ¢ ¢ ¢ ¢

hammer time DELAY: 640 ms.

SYSINIT vmmem: ~ 20 ms / GB RAM.

SYSINIT cpu DELAY: 1000 ms.

SYSINIT start_aps: 3 ms on my laptop, 800 ms in EC2.
DEVICE _PROBE hpt*: 320 ms.

DEVICE PROBE psm: 2000 ms on my laptop, 1500 ms in EC2.
SYSINIT clocks DELAY: 1000 ms.

THREAD g_event: 2600 ms on my laptop — GELI key
derivation.

THREAD usbusO: 9000 ms on my laptop — root mount
waiting for usbus0.

_vprintf: 720 ms on my laptop, 4000 ms in EC2.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why profile the FreeBSD kernel boot?

Taking a systematic approach to profiling the kernel
boot will tell you far more than simply relying on
your ability to notice when it seems slow.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Availability

@ TSLOG code is in FreeBSD HEAD.

@ Visualization code is at
https://github.com/cperciva/freebsd-boot-profiling.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Availability

@ TSLOG code is in FreeBSD HEAD.

@ Visualization code is at
https://github.com/cperciva/freebsd-boot-profiling.

Questions?

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

