
Profiling the FreeBSD kernel boot

From hammer time to start init

Colin Percival
Tarsnap Backup Inc.

cperciva@tarsnap.com

March 10, 2018

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why profile the FreeBSD kernel boot?

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why did I profile the FreeBSD kernel boot?

In June 2017 I bought a new laptop.

Unlike many FreeBSD developers, I insist on running FreeBSD
on my laptops.

Video driver support in laptops has traditionally been
problematic.

1. Load the i915kms.ko kernel module.
2. Read the panic message.
3. Reboot.
4. Try changing some code.
5. Recompile the kernel module.
6. GOTO 1

Hundreds and hundreds of attempts.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why did I profile the FreeBSD kernel boot?

Around reboot number 100 I started to notice things.

Text scrolls by as the kernel initializes itself and probes
devices, but sometimes the scrolling stops for a while.

I started wondering what the kernel was doing during these
“pauses”.

Make educated guesses and sprinkle
printf("%llu\n", rdtsc());

Initializing the vm page array. (20 ms / GB RAM)
Calibrating the CPU clock frequency. (1.0 s)
Calibrating the local APIC timer. (1.0 s)
Probing and initializing psm0. (2.0 s)

I realized that having a systematic way of measuring
everything would be much better than annotating functions
only when I became suspicious.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

FreeBSD boot process

BIOS / EFI

FreeBSD boot loader(s)

FreeBSD kernel initialization

Machine-dependent initialization (e.g., hammer time)
mi startup

start init (including vfs mountroot).

FreeBSD userland initialization

rc.d scripts

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

FreeBSD boot process

BIOS / EFI

FreeBSD boot loader(s)

FreeBSD kernel initialization ← I’m looking at this.

Machine-dependent initialization (e.g., hammer time)
mi startup

start init (including vfs mountroot).

FreeBSD userland initialization

rc.d scripts

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Linux boot profiling

Linux prints a timestamp at the start of each line of kernel
output.

[2.082829] ACPI: Power Button [PWRF]

[2.085704] input: Sleep Button as /devices/LNX...

[2.092002] ACPI: Sleep Button [SLPF]

[2.166920] input: ImExPS/2 Generic Explorer Mo...

[2.302339] mousedev: PS/2 mouse device common ...

This can make it very easy for users to notice if part of the
kernel boot is taking a long time.

Timestamping kernel log messages means that you only get
timestamps when the kernel is printing log messages — not
always the most useful moments.

At the beginning of the Linux boot, all the timestamps logged
are 0.000000 because the clocks aren’t initialized yet —
better to record raw CPU cycle count numbers and then
translate them later.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

DTrace

DTrace is the way to profile anything and everything in
FreeBSD!

However, DTrace needs:

Traps
Memory allocation
Thread scheduling
probably lots more...

A large part of what we want to profile happens before any of
these basic kernel subroutines are available.

We need to use something which is simpler and with fewer
dependencies.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

KTR

KTR is a mechanism for logging “kernel events”.

You call a function; it logs whatever you give it into a buffer.

Almost exactly what I needed, but...

It uses a circular buffer — good for answering “what happened
just before we crashed” but bad for answering “what happened
at the start of the boot process”.
Its default buffer size is only 1024 records — we will need far
more than this.
It can’t quite run at the start of the boot process.

All of these limitations could be worked around with a few
lines of changes, but it was simpler to add a new subroutine
for logging timestamped events which was designed for boot
profiling.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

TSLOG

sys/tslog.h and kern/kern tslog.c implement the
TSLOG framework.

Buffer fixed at compile time (default 256k records).

To log an record, we atomically reserve a slot, then populate
it with the appropriate data.

When the buffer is full, future records are silently discarded.

Each record consists of a cycle count, a thread ID, a record
type, and one or two strings.

Records are logged via TS* macros, which compile to nothing
for kernels compiled without the TSLOG option.

The buffer is dumped to userland via the debug.tslog sysctl.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Function tracing

We can figure out most of what we want to know by knowing
when we entered and exited functions.

TSENTER() records that we have entered a function.

TSEXIT() records that we are about to exit a function.

Scatter these through the tree in potentially useful places!

Top level of the boot process: hammer time, mi startup,
start init.

Functions which get called a lot: DELAY(), vprintf.

SYSINIT routines.

DEVICE PROBE and DEVICE ATTACH functions.

VFS MOUNT calls.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Annotating a function

void

DELAY(int n)

{

TSENTER();

if (delay_tc(n)) {

TSEXIT();

return;

}

init_ops.early_delay(n);

TSEXIT();

}

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

SYSINIT

SYSINITs are a mechanism used by FreeBSD to specify that
code should be run during the kernel startup process.

SYSINIT(name, order1, order2, function, cookie);

Similar to Linux initcalls.

A record is created in a special ELF section, and linker magic
makes it possible to get a list of all the SYSINITs declared all
over the kernel.

mi startup sorts the SYSINIT functions and calls them in
the appropriate order.

With the TSLOG kernel option, we redefine the SYSINIT
macro to call a shim function which logs the entry/exit.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

SYSINIT

#ifdef TSLOG

struct sysinit_tslog {

sysinit_cfunc_t func;

const void * data;

const char * name;

};

static inline void

sysinit_tslog_shim(const void * data)

{

const struct sysinit_tslog * x = data;

TSRAW(curthread, TS_ENTER, "SYSINIT", x->name);

(x->func)(x->data);

TSRAW(curthread, TS_EXIT, "SYSINIT", x->name);

}

...

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

DEVICE PROBE and DEVICE ATTACH

The configure2 SYSINIT function recurses through the
attached buses looking for devices.

As the names suggest, DEVICE PROBE is used to probe
devices, and DEVICE ATTACH is used to attach devices once
they are found.

Drivers declare their probe and attach methods via the
DEVMETHOD macro.

Yes, the FreeBSD kernel is object-oriented! See kobj(9).

DEVICE * are inline functions defined in device if.h, which
is generated at build-time from device if.m.

Generic object method dispatch code: Look up the function
pointer, then call it.

I taught makeobjops.awk to add prologues and epilogues to
the generated code, then annotated device if.m.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

VFS MOUNT

#define VFS_MOUNT(MP) ({ \

int _rc; \

\

TSRAW(curthread, TS_ENTER, "VFS_MOUNT", \

(MP)->mnt_vfc->vfc_name); \

VFS_PROLOGUE(MP); \

_rc = (*(MP)->mnt_op->vfs_mount)(MP); \

VFS_EPILOGUE(MP); \

TSRAW(curthread, TS_EXIT, "VFS_MOUNT", \

(MP)->mnt_vfc->vfc_name); \

_rc; })

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Boot holds

Tracing function entry/exit points tells us what each kernel
thread is doing at any given time.

Once the kernel is running multiple threads, we need a bit
more than this — sometimes one thread will wait for another.

The intr config hooks SYSINIT waits for hooks which
were established via config intrhook establish.

The g waitidle function waits for the GEOM event queue to
be empty.

The vfs mountroot wait function waits for holds registered
via root mount hold.

Extracting information from the kernel scheduler might help
here, but that gets complicated fast.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Boot holds

Much simpler: Annotate the places where the “main thread”
is blocked waiting for other threads to finish something.

Record the start and end of “waits”, and when “holds” are
acquired and released.

Record the identity of newly created kernel threads.

Heuristic: Blame “blocked” time on whatever thread was the
last one to release a hold, for as long as that thread held it.

Heuristic: Assume the thread was blocking the boot process
starting at the latest of when it picked up a hold and when
the thread was created.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Visualization

After booting, dump all of the logged records.

Organize them into threads and use entry/exit records to
construct timestamped stacks.

The “kernel boot process” is thread0 (aka. swapper) plus
init prior to when it enters userland.

Where a boot hold occurs, identify the thread which we’re
waiting for and splice its stacks on top.

Now we have a series of stacks covering the kernel boot
process.

Obvious visualization tool: Flame Graphs.

Unfortunately Flame Graphs sort stacks in alphabetical order...

Flame Charts are like Flame Graphs but keep the stacks in
chronological order.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Flame Charts

My laptop:

Amazon EC2 c5.4xlarge:

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Where’s the time going?

hammer time DELAY: 640 ms.

SYSINIT vm mem: ≈ 20 ms / GB RAM.

SYSINIT cpu DELAY: 1000 ms.

SYSINIT start aps: 3 ms on my laptop, 800 ms in EC2.

DEVICE PROBE hpt*: 320 ms.

DEVICE PROBE psm: 2000 ms on my laptop, 1500 ms in EC2.

SYSINIT clocks DELAY: 1000 ms.

THREAD g event: 2600 ms on my laptop — GELI key
derivation.

THREAD usbus0: 9000 ms on my laptop — root mount
waiting for usbus0.

vprintf: 720 ms on my laptop, 4000 ms in EC2.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Where’s the time going?

hammer time DELAY: 640 ms.

SYSINIT vm mem: ≈ 20 ms / GB RAM.

SYSINIT cpu DELAY: 1000 ms.

SYSINIT start aps: 3 ms on my laptop, 800 ms in EC2.

DEVICE PROBE hpt*: 320 ms.

DEVICE PROBE psm: 2000 ms on my laptop, 1500 ms in EC2.

SYSINIT clocks DELAY: 1000 ms.

THREAD g event: 2600 ms on my laptop — GELI key
derivation.

THREAD usbus0: 9000 ms on my laptop — root mount
waiting for usbus0.

vprintf: 720 ms on my laptop, 4000 ms in EC2.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Why profile the FreeBSD kernel boot?

Taking a systematic approach to profiling the kernel

boot will tell you far more than simply relying on

your ability to notice when it seems slow.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Availability

TSLOG code is in FreeBSD HEAD.

Visualization code is at
https://github.com/cperciva/freebsd-boot-profiling.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

Availability

TSLOG code is in FreeBSD HEAD.

Visualization code is at
https://github.com/cperciva/freebsd-boot-profiling.

Questions?

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com Profiling the FreeBSD kernel boot

