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Review of Floating-Point Arithmetic

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(−1)s · βe−B · m

where {s, e, m} ⊂ N, 0 < e < E, βt−1 ≤ m < βt, and
β, t, B, E are parameters of the floating-point system
being used.

As a special case, e = 0 and m = βt−1 represents ±0.

In IEEE 754 “double precision” arithmetic, β = 2, t = 53,
B = 1075 and E = 2047.

There are also denormals, infinities, and NaNs, but in
numerical code they usually never occur.

Rounding Errors in Complex Floating-Point Multiplication – p.2/24



Review of Floating-Point Arithmetic

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(−1)s · βe−B · m

where {s, e, m} ⊂ N, 0 < e < E, βt−1 ≤ m < βt, and
β, t, B, E are parameters of the floating-point system
being used.

As a special case, e = 0 and m = βt−1 represents ±0.

In IEEE 754 “double precision” arithmetic, β = 2, t = 53,
B = 1075 and E = 2047.

There are also denormals, infinities, and NaNs, but in
numerical code they usually never occur.

Rounding Errors in Complex Floating-Point Multiplication – p.2/24



Review of Floating-Point Arithmetic

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(−1)s · βe−B · m

where {s, e, m} ⊂ N, 0 < e < E, βt−1 ≤ m < βt, and
β, t, B, E are parameters of the floating-point system
being used.

As a special case, e = 0 and m = βt−1 represents ±0.

In IEEE 754 “double precision” arithmetic, β = 2, t = 53,
B = 1075 and E = 2047.

There are also denormals, infinities, and NaNs, but in
numerical code they usually never occur.

Rounding Errors in Complex Floating-Point Multiplication – p.2/24



Review of Floating-Point Arithmetic

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(−1)s · βe−B · m

where {s, e, m} ⊂ N, 0 < e < E, βt−1 ≤ m < βt, and
β, t, B, E are parameters of the floating-point system
being used.

As a special case, e = 0 and m = βt−1 represents ±0.

In IEEE 754 “double precision” arithmetic, β = 2, t = 53,
B = 1075 and E = 2047.

There are also denormals, infinities, and NaNs, but in
numerical code they usually never occur.

Rounding Errors in Complex Floating-Point Multiplication – p.2/24



Terminology

Denote by ⊕, 	, and ⊗ the results of rounded
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x 6= 0 as
the (unique) power of β such that

βt−1 ≤ |x| /ulp(x) < βt

and ulp(0) = 0.

Note that for x 6= 0,

ulp((−1)s · βe−B · m) = βe−B

and ulp(x) ≤ x · β1−t.

Also define ε = 1

2
ulp(1) = 1

2
β1−t.
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Floating-Point Rounding Errors

IEEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.
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Floating-Point Rounding Errors

IEEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

In round-to-nearest mode on IEEE 754 systems,

|(x + y) − (x ⊕ y)| ≤ 1

2
ulp(x + y) < ε(x + y)

|(x − y) − (x 	 y)| ≤ 1

2
ulp(x − y) < ε(x − y)

|(xy) − (x ⊗ y)| ≤ 1

2
ulp(xy) < ε(xy)
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Complex Rounding Errors

For complex z0 = a0 + ib0, z1 = a1 + ib1, if we compute
z2 = a2 + ib2 = (a0 ⊕ a1) + i(b0 ⊕ b1), then

|(z0 + z1) − z2| =
√

((a0 + a1) − a2)2 + ((b0 + b1) − b2)2

<
√

(ε |a0 + a1|)2 + (ε |b0 + b1|)2 = ε |z0 + z1|

Problem: If we compute

x2 = (a0 ⊗ a1) 	 (b0 ⊗ b1)

y2 = (a0 ⊗ b1) ⊕ (b0 ⊗ a1),

what is the smallest α such that |z0z1 − z2| < εα |z0z1| ?
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Motivation

The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

Finite Field arithmetic is slow on most CPUs.
Floating-Point arithmetic has rounding errors.

Theorem [Percival, 2002]: The FFT allows accurate
computation of the cyclic convolution z = x ∗ y of two
vectors of length N = 2n of Gaussian integers if

|x| · |y| · ((1 + ε)3n(1 + εα)3n+1(1 + β)3n − 1) <
1

2

where εα is the maximum relative error of complex
multiplication, and β is the maximum error in the
precomputed complex roots of unity used.
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Previous Bounds

We can take α =
√

8 [Higham, Accuracy and Stability of
Numerical Algorithms].

We can take α =
√

16/3 [Olver, 1986].

We can take α =
√

5 [Percival, 2002].

Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
inputs.
Unfortunately the proof was wrong...
... and it took five years before anyone noticed!
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Error Bound

Theorem 1. [Brent, Percival, Zimmermann, 2006]

Let z0 = a0 + b0i and z1 = a1 + b1i, with a0, b0, a1, b1

floating-point values with t-digit base-β significands, and

z2 = ((a0 ⊗ a1) 	 (b0 ⊗ b1)) + ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i.

Providing that no overflow or underflow occur, no denormal

values are produced, arithmetic results are correctly rounded

to a nearest representable value, z0z1 6= 0, and βt ≥ 25,

|z0z1 − z2| <
1

2
β1−t |z0z1| = ε

√
5 |z0z1| .
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Equivalent Inputs

Without loss of generality, we can assume the greatest
possible relative error occurs when

0 ≤ a0, b0, a1, b1, by multiplying by powers of i,

b0b1 ≤ a0a1, by taking complex congugates and
multiplying z0, z1 by i,

b0a1 ≤ a0b1, by swapping z0 and z1,
1

2
≤ a0 < 1, by multiplying z0 by powers of 2, and

1

2
≤ a0a1 < 1, by multiplying z1 by powers of 2,
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Equivalent Inputs

Without loss of generality, we can assume the greatest
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multiplying z0, z1 by i,

b0a1 ≤ a0b1, by swapping z0 and z1,
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≤ a0 < 1, by multiplying z0 by powers of 2, and

1
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none of which affect the resulting relative error.
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Imaginary Error

To bound the imaginary error |=(z0z1 − z2)|, we consider
two cases:

Case I1: ulp(a0b1 + b0a1) < ulp(a0 ⊗ b1 + b0 ⊗ a1)

Case I2: ulp(a0 ⊗ b1 + b0 ⊗ a1) ≤ ulp(a0b1 + b0a1)

In each case, we find that

|(a0 ⊗ b1 + b0 ⊗ a1) − ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))| < ε·(a0b1+b0a1)

and thus

|=(z0z1 − z2)| < ε · (2a0b1 + 2b0a1).
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Real Error

To bound the real error |<(z0z1 − z2)|, we will consider
four cases:

Case R1: ulp(b0b1) ≤ ulp(a0a1) ≤ ulp(a0 ⊗ a1 − b0 ⊗ b1)

Case R2: ulp(b0b1) < ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(a0a1)

Case R3: ulp(a0 ⊗ a1 − b0 ⊗ b1) ≤ ulp(b0b1) < ulp(a0a1)

Case R4:
ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(b0b1) = ulp(a0a1)

Since we have assumed that 0 ≤ b0b1 ≤ a0a1, these four
cases cover all possible inputs.

Once we have bounds on the real error for each of
these cases, we can combine them with the imaginary
error bound to obtain a bound on the complex error.
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Case R1

ulp(b0b1) ≤ ulp(a0a1) ≤ ulp(a0 ⊗ a1 − b0 ⊗ b1)

|<(z0z1 − z2)| ≤
1

2
ulp(b0b1) +

1

2
ulp(a0a1) +

1

2
ulp(a0 ⊗ a1 − b0 ⊗ b1)

≤ 1

2
ulp(b0b1) +

2

2
ulp(a0 ⊗ a1 − b0 ⊗ b1)

≤ ε · (2a0a1 − b0b1) + 2ε2 |z0z1|
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Case R2
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(

1

8
+

1

4
+

1

2

)
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(

7

4
a0a1
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Case R3

ulp(a0 ⊗ a1 − b0 ⊗ b1) ≤ ulp(b0b1) < ulp(a0a1)
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Case R4

ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(b0b1) = ulp(a0a1)
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Absolute Complex Error

Imaginary error: |=(z0z1 − z2)| < ε · (2a0b1 + 2b0a1)

Case R1: |<(z0z1 − z2)| ≤ ε · (2a0a1 − b0b1) + 2ε2 |z0z1|
=⇒ |z0z1 − z2| < ε

(

√

32/7 + 2ε
)

|z0z1|

Case R2: |<(z0z1 − z2)| ≤ ε ·
(

7

4
a0a1

)

=⇒ |z0z1 − z2| < ε
√

1024/207 |z0z1|
Case R3: |<(z0z1 − z2)| ≤ ε ·

(

3

2
a0a1

)

=⇒ |z0z1 − z2| < ε
√

256/55 |z0z1|
Case R4: |<(z0z1 − z2)| ≤ ε · (a0a1 + b0b1)

=⇒ |z0z1 − z2| < ε
√

5 |z0z1|
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Worst-Case Multiplicands for β = 2

Theorem 2. Assume that

|z0z1 − z2|
|z0z1|

> ε
√

5 − nε > ε · max
(

√

1024/207,
√

32/7 + 2ε
)

for some positive integer n. Then a0 6= b0, a1 6= b1, and

a0a1 = 1/2 + (jaa + 1/2)ε + kaaε
2 a0b1 = 1/2 + (jab + 1/2)ε + kabε

2

b0a1 = 1/2 + (jba + 1/2)ε + kbaε
2 b0b1 = 1/2 + (jbb + 1/2)ε + kbbε

2

for some integers jxy, kxy satisfying

0 ≤ jaa, jab, jba, jbb <
n

4
, |kaa| , |kbb| < n, |kab| , |kba| <

n

2
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Sketch of Proof

From the argument in Theorem 1, case R4 must hold:
ulp(b0b1) = ulp(a0a1) = ε, and there is no rounding error
introduced in the subtraction.

Juggling of inequalities leads to

1 ≤ |z0z1|2 ≤ 5

5 − nε

ε2(5 − nε) < |z0z1 − z2|2 < 5ε2

Considering what these bounds imply about a0a1,
|a0a1 − a0 ⊗ a1|, et cetera, provides the result desired.
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Computation is Useful!

At this point, I turned to computation.

Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem
2 to eliminate most of the search space.
Searching took about 5 CPU-hours.
Worst case inputs:

a0 =
3

4
b0 =

3

4
(1 − 4ε) a1 =

2

3
(1 + 11ε) b1 =

2

3
(1 + 5ε)

This suggests a more general form...
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Worst-Case Multiplicands for β = 2

Theorem 3. Assume that

|z0z1 − z2|
|z0z1|

> ε
√

5 − nε > ε · max
(

√

1024/207,
√

32/7 + 2ε
)

for some n < 1

4
ε−1/2 and ε ≤ 2−6. Then there exist integers c0, d0,

α0, β0, c1, d1, α1, β1 satisfying

z0 =
c0

d0

(1 + i + (α0 + β0i)ε) z1 =
c1

d1

(1 + i + (α1 + β1i)ε)

min(α0, β0) + min(α1, β1) ≥ 0 2c0c1 = d0d1 < 3n

|α0α1| , |α0β1| , |β0α1| , |β0β1| < n
1

2
< a0, b0, a1, b1 < 1.
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Worst-Case Multiplicands for IEEE 754

Now an “exhaustive” search is far less exhausting.

The IEEE 754 single-precision worst-case inputs are

a0 =
3

4
b0 =

3

4
(1 − 4ε) a1 =

2

3
(1 + 11ε) b1 =

2

3
(1 + 5ε)

and have a relative error of ε ·
√

4.9999899864.

The IEEE 754 double-precision worst-case inputs are

a0 =
3

4
(1 + 4ε) b0 =

3

4
a1 =

2

3
(1 + 7ε) b1 =

2

3
(1 + ε)

and have a relative error of ε ·
√

4.9999999999999893.

Clearly ε
√

5 is the best (practical) bound possible.
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Roots of Unity

We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

Even if your CPU provides exactly rounded
transcendental functions, cos(2πk/2n) + i sin(2πk/2n) still
suffers from rounding in the value of π used and the
multiplication k ⊗ π, in addition to the two trigonometric
evaluations.

Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

It is possible to compute the 2nth roots of unity in
27

32
· 2n + O(n) FLOPS with a maximum error < 2ε.

... I need to find time to write this paper some day.
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A Historical Note

“Indeed, in unpublished work R.P. Brent has
demonstrated that in base 2, for example, [the error
term] can be reduced to

√
5 . . . ”

— F.W.J. Olver, 1986
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