Rounding Errors in Complex Floating-Point Multiplication

Colin Percival
cperciva@irmacs.sfu.ca

IRMACS, Simon Fraser University

Review of Floating-Point Arithmetic

- Floating-point values are expressed as a sign, significand, and exponent, e.g.,

$$
(-1)^{s} \cdot \beta^{e-B} \cdot m
$$

where $\{s, e, m\} \subset \mathbb{N}, 0<e<E, \beta^{t-1} \leq m<\beta^{t}$, and β, t, B, E are parameters of the floating-point system being used.

Review of Floating-Point Arithmetic

- Floating-point values are expressed as a sign, significand, and exponent, e.g.,

$$
(-1)^{s} \cdot \beta^{e-B} \cdot m
$$

where $\{s, e, m\} \subset \mathbb{N}, 0<e<E, \beta^{t-1} \leq m<\beta^{t}$, and β, t, B, E are parameters of the floating-point system being used.

- As a special case, $e=0$ and $m=\beta^{t-1}$ represents ± 0.

Review of Floating-Point Arithmetic

- Floating-point values are expressed as a sign, significand, and exponent, e.g.,

$$
(-1)^{s} \cdot \beta^{e-B} \cdot m
$$

where $\{s, e, m\} \subset \mathbb{N}, 0<e<E, \beta^{t-1} \leq m<\beta^{t}$, and β, t, B, E are parameters of the floating-point system being used.

- As a special case, $e=0$ and $m=\beta^{t-1}$ represents ± 0.
- In IEEE 754 "double precision" arithmetic, $\beta=2, t=53$, $B=1075$ and $E=2047$.

Review of Floating-Point Arithmetic

- Floating-point values are expressed as a sign, significand, and exponent, e.g.,

$$
(-1)^{s} \cdot \beta^{e-B} \cdot m
$$

where $\{s, e, m\} \subset \mathbb{N}, 0<e<E, \beta^{t-1} \leq m<\beta^{t}$, and β, t, B, E are parameters of the floating-point system being used.

- As a special case, $e=0$ and $m=\beta^{t-1}$ represents ± 0.
- In IEEE 754 "double precision" arithmetic, $\beta=2, t=53$, $B=1075$ and $E=2047$.
- There are also denormals, infinities, and NaNs, but in numerical code they usually never occur.

Terminology

- Denote by \oplus, \ominus, and \otimes the results of rounded floating-point addition, subtraction, and multiplication, and define the "unit in the last place" ulp (x) for $x \neq 0$ as the (unique) power of β such that

$$
\beta^{t-1} \leq|x| / \operatorname{ulp}(x)<\beta^{t}
$$

and $u l p(0)=0$.

Terminology

- Denote by \oplus, \ominus, and \otimes the results of rounded floating-point addition, subtraction, and multiplication, and define the "unit in the last place" $\operatorname{ulp}(x)$ for $x \neq 0$ as the (unique) power of β such that

$$
\beta^{t-1} \leq|x| / \operatorname{ulp}(x)<\beta^{t}
$$

and $u l p(0)=0$.

- Note that for $x \neq 0$,

$$
\operatorname{ulp}\left((-1)^{s} \cdot \beta^{e-B} \cdot m\right)=\beta^{e-B}
$$

and $\operatorname{ulp}(x) \leq x \cdot \beta^{1-t}$.

Terminology

- Denote by \oplus, \ominus, and \otimes the results of rounded floating-point addition, subtraction, and multiplication, and define the "unit in the last place" $\operatorname{ulp}(x)$ for $x \neq 0$ as the (unique) power of β such that

$$
\beta^{t-1} \leq|x| / \operatorname{ulp}(x)<\beta^{t}
$$

and $u \operatorname{lp}(0)=0$.

- Note that for $x \neq 0$,

$$
\operatorname{ulp}\left((-1)^{s} \cdot \beta^{e-B} \cdot m\right)=\beta^{e-B}
$$

and $\operatorname{ulp}(x) \leq x \cdot \beta^{1-t}$.

- Also define $\epsilon=\frac{1}{2} \operatorname{ulp}(1)=\frac{1}{2} \beta^{1-t}$.

Floating-Point Rounding Errors

- IEEE 754 requires that arithmetic operations produce results which are exactly rounded, i.e., the same as if the values were computed to infinite precision prior to rounding.

Floating-Point Rounding Errors

- IEEE 754 requires that arithmetic operations produce results which are exactly rounded, i.e., the same as if the values were computed to infinite precision prior to rounding.
- In round-to-nearest mode on IEEE 754 systems,

$$
\begin{aligned}
|(x+y)-(x \oplus y)| & \leq \frac{1}{2} \operatorname{ulp}(x+y) \\
|(x-y)-(x \ominus y)| & \leq \frac{1}{2} \operatorname{ulp}(x-y) \\
|(x y)-(x \otimes y)| & \leq \frac{1}{2} \operatorname{ulp}(x y)
\end{aligned}
$$

Floating-Point Rounding Errors

- IEEE 754 requires that arithmetic operations produce results which are exactly rounded, i.e., the same as if the values were computed to infinite precision prior to rounding.
- In round-to-nearest mode on IEEE 754 systems,

$$
\begin{gathered}
|(x+y)-(x \oplus y)| \leq \frac{1}{2} \operatorname{ulp}(x+y)<\epsilon(x+y) \\
|(x-y)-(x \ominus y)| \leq \frac{1}{2} \operatorname{ulp}(x-y)<\epsilon(x-y) \\
|(x y)-(x \otimes y)| \leq \frac{1}{2} \operatorname{ulp}(x y)<\epsilon(x y)
\end{gathered}
$$

Complex Rounding Errors

- For complex $z_{0}=a_{0}+i b_{0}, z_{1}=a_{1}+i b_{1}$, if we compute $z_{2}=a_{2}+i b_{2}=\left(a_{0} \oplus a_{1}\right)+i\left(b_{0} \oplus b_{1}\right)$, then

$$
\left|\left(z_{0}+z_{1}\right)-z_{2}\right|=\sqrt{\left(\left(a_{0}+a_{1}\right)-a_{2}\right)^{2}+\left(\left(b_{0}+b_{1}\right)-b_{2}\right)^{2}}
$$

$$
<\sqrt{\left(\epsilon\left|a_{0}+a_{1}\right|\right)^{2}+\left(\epsilon\left|b_{0}+b_{1}\right|\right)^{2}}=\epsilon\left|z_{0}+z_{1}\right|
$$

Complex Rounding Errors

- For complex $z_{0}=a_{0}+i b_{0}, z_{1}=a_{1}+i b_{1}$, if we compute $z_{2}=a_{2}+i b_{2}=\left(a_{0} \oplus a_{1}\right)+i\left(b_{0} \oplus b_{1}\right)$, then

$$
\begin{aligned}
\left|\left(z_{0}+z_{1}\right)-z_{2}\right| & =\sqrt{\left(\left(a_{0}+a_{1}\right)-a_{2}\right)^{2}+\left(\left(b_{0}+b_{1}\right)-b_{2}\right)^{2}} \\
& <\sqrt{\left(\epsilon\left|a_{0}+a_{1}\right|\right)^{2}+\left(\epsilon\left|b_{0}+b_{1}\right|\right)^{2}}=\epsilon\left|z_{0}+z_{1}\right|
\end{aligned}
$$

- Problem: If we compute

$$
\begin{aligned}
& x_{2}=\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right) \\
& y_{2}=\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right),
\end{aligned}
$$

what is the smallest α such that $\left|z_{0} z_{1}-z_{2}\right|<\epsilon \alpha\left|z_{0} z_{1}\right|$?

Motivation

- The Fast Fourier Transform makes large polynomial (and integer) arithmetic practical.

Motivation

- The Fast Fourier Transform makes large polynomial (and integer) arithmetic practical.
- Finite Field arithmetic is slow on most CPUs.

Motivation

- The Fast Fourier Transform makes large polynomial (and integer) arithmetic practical.
- Finite Field arithmetic is slow on most CPUs.
- Floating-Point arithmetic has rounding errors.

Motivation

- The Fast Fourier Transform makes large polynomial (and integer) arithmetic practical.
- Finite Field arithmetic is slow on most CPUs.
- Floating-Point arithmetic has rounding errors.
- Theorem [Percival, 2002]: The FFT allows accurate computation of the cyclic convolution $z=x * y$ of two vectors of length $N=2^{n}$ of Gaussian integers if

$$
|x| \cdot|y| \cdot\left((1+\epsilon)^{3 n}(1+\epsilon \alpha)^{3 n+1}(1+\beta)^{3 n}-1\right)<\frac{1}{2}
$$

where $\epsilon \alpha$ is the maximum relative error of complex multiplication, and β is the maximum error in the precomputed complex roots of unity used.

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].
- We can take $\alpha=\sqrt{16 / 3}$ [Olver, 1986].

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].
- We can take $\alpha=\sqrt{16 / 3}$ [Olver, 1986].
- We can take $\alpha=\sqrt{5}$ [Percival, 2002].

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].
- We can take $\alpha=\sqrt{16 / 3}$ [Olver, 1986].
- We can take $\alpha=\sqrt{5}$ [Percival, 2002].
- Conjectured based on comparing the results of single-precision and double-precision complex multiplication of several million randomly chosen inputs.

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].
- We can take $\alpha=\sqrt{16 / 3}$ [Olver, 1986].
- We can take $\alpha=\sqrt{5}$ [Percival, 2002].
- Conjectured based on comparing the results of single-precision and double-precision complex multiplication of several million randomly chosen inputs.
- Unfortunately the proof was wrong...

Previous Bounds

- We can take $\alpha=\sqrt{8}$ [Higham, Accuracy and Stability of Numerical Algorithms].
- We can take $\alpha=\sqrt{16 / 3}$ [Olver, 1986].
- We can take $\alpha=\sqrt{5}$ [Percival, 2002].
- Conjectured based on comparing the results of single-precision and double-precision complex multiplication of several million randomly chosen inputs.
- Unfortunately the proof was wrong...
- ... and it took five years before anyone noticed!

Error Bound

Theorem 1. [Brent, Percival, Zimmermann, 2006]
Let $z_{0}=a_{0}+b_{0} i$ and $z_{1}=a_{1}+b_{1} i$, with $a_{0}, b_{0}, a_{1}, b_{1}$
floating-point values with t-digit base- β significands, and
$z_{2}=\left(\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)\right)+\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right) i$.
Providing that no overflow or underflow occur, no denormal values are produced, arithmetic results are correctly rounded to a nearest representable value, $z_{0} z_{1} \neq 0$, and $\beta^{t} \geq 2^{5}$,

$$
\left|z_{0} z_{1}-z_{2}\right|<\frac{1}{2} \beta^{1-t}\left|z_{0} z_{1}\right|=\epsilon \sqrt{5}\left|z_{0} z_{1}\right| .
$$

Equivalent Inputs

Without loss of generality, we can assume the greatest possible relative error occurs when

- $0 \leq a_{0}, b_{0}, a_{1}, b_{1}$, by multiplying by powers of i,

Equivalent Inputs

Without loss of generality, we can assume the greatest possible relative error occurs when

- $0 \leq a_{0}, b_{0}, a_{1}, b_{1}$, by multiplying by powers of i,
- $b_{0} b_{1} \leq a_{0} a_{1}$, by taking complex congugates and multiplying z_{0}, z_{1} by i,

Equivalent Inputs

Without loss of generality, we can assume the greatest possible relative error occurs when

- $0 \leq a_{0}, b_{0}, a_{1}, b_{1}$, by multiplying by powers of i,
- $b_{0} b_{1} \leq a_{0} a_{1}$, by taking complex congugates and multiplying z_{0}, z_{1} by i,
- $b_{0} a_{1} \leq a_{0} b_{1}$, by swapping z_{0} and z_{1},

Equivalent Inputs

Without loss of generality, we can assume the greatest possible relative error occurs when

- $0 \leq a_{0}, b_{0}, a_{1}, b_{1}$, by multiplying by powers of i,
- $b_{0} b_{1} \leq a_{0} a_{1}$, by taking complex congugates and multiplying z_{0}, z_{1} by i,
- $b_{0} a_{1} \leq a_{0} b_{1}$, by swapping z_{0} and z_{1},
- $\frac{1}{2} \leq a_{0}<1$, by multiplying z_{0} by powers of 2 , and

Equivalent Inputs

Without loss of generality, we can assume the greatest possible relative error occurs when

- $0 \leq a_{0}, b_{0}, a_{1}, b_{1}$, by multiplying by powers of i,
- $b_{0} b_{1} \leq a_{0} a_{1}$, by taking complex congugates and multiplying z_{0}, z_{1} by i,
- $b_{0} a_{1} \leq a_{0} b_{1}$, by swapping z_{0} and z_{1},
- $\frac{1}{2} \leq a_{0}<1$, by multiplying z_{0} by powers of 2 , and
- $\frac{1}{2} \leq a_{0} a_{1}<1$, by multiplying z_{1} by powers of 2 ,
none of which affect the resulting relative error.

Imaginary Error

- To bound the imaginary error $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|$, we consider two cases:

Imaginary Error

- To bound the imaginary error $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|$, we consider two cases:
- Case I1: $\operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)$

Imaginary Error

- To bound the imaginary error $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|$, we consider two cases:
- Case I1: $\operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)$
- Case I2: ulp $\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \leq \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)$

Imaginary Error

- To bound the imaginary error $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|$, we consider two cases:
- Case I1: $\operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)$
- Case I2: ulp $\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \leq \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)$
- In each case, we find that
$\left|\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)-\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right)\right|<\epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)$ and thus

$$
\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right) .
$$

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$
- Case R2: $\operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$
- Case R2: ulp $\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R3: $\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$
- Case R2: ulp $\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R3: ulp $\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R4: ulp $\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)$

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$
- Case R2: ulp $\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R3: $\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R4: ulp $\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Since we have assumed that $0 \leq b_{0} b_{1} \leq a_{0} a_{1}$, these four cases cover all possible inputs.

Real Error

- To bound the real error $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right|$, we will consider four cases:
- Case R1: $\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$
- Case R2: ulp $\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R3: $\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Case R4: ulp $\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)$
- Since we have assumed that $0 \leq b_{0} b_{1} \leq a_{0} a_{1}$, these four cases cover all possible inputs.
- Once we have bounds on the real error for each of these cases, we can combine them with the imaginary error bound to obtain a bound on the complex error.

Case R1

$\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$

Case R1

$$
\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)
$$

Note that

$$
\frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\epsilon \cdot\left(a_{0} a_{1}-b_{0} b_{1}+\epsilon\left(a_{0} a_{1}+b_{0} b_{1}\right)\right)
$$

Case R1

$$
\operatorname{ulp}\left(b_{0} b_{1}\right) \leq \operatorname{ulp}\left(a_{0} a_{1}\right) \leq \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)
$$

Note that

$$
\frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\epsilon \cdot\left(a_{0} a_{1}-b_{0} b_{1}+\epsilon\left(a_{0} a_{1}+b_{0} b_{1}\right)\right)
$$

Consequently,

$$
\begin{aligned}
\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| & \leq \frac{1}{2} \operatorname{ulp}\left(b_{0} b_{1}\right)+\frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)+\frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \\
& \leq \frac{1}{2} \operatorname{ulp}\left(b_{0} b_{1}\right)+\frac{2}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \\
& \leq \epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+2 \epsilon^{2}\left|z_{0} z_{1}\right|
\end{aligned}
$$

Case R2

$$
\operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Case R2

$$
\operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that $\operatorname{ulp}(x)<\operatorname{ulp}(y)$ implies $\operatorname{ulp}(x) \leq \frac{1}{2} \operatorname{ulp}(y)$, i.e.,

$$
\begin{aligned}
\operatorname{ulp}\left(b_{0} b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \\
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)
\end{aligned}
$$

Case R2

$$
\operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that $\operatorname{ulp}(x)<\operatorname{ulp}(y)$ implies $\operatorname{ulp}(x) \leq \frac{1}{2} \operatorname{ulp}(y)$, i.e.,

$$
\begin{aligned}
\operatorname{ulp}\left(b_{0} b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \\
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| & \leq\left(\frac{1}{8}+\frac{1}{4}+\frac{1}{2}\right) \cdot \operatorname{ulp}\left(a_{0} a_{1}\right) \\
& \leq \epsilon \cdot\left(\frac{7}{4} a_{0} a_{1}\right)
\end{aligned}
$$

Case R3

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Case R3

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that

$$
\begin{aligned}
\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right) & =a_{0} \otimes a_{1}-b_{0} \otimes b_{1} \\
u l p\left(b_{0} b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)
\end{aligned}
$$

Case R3

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right) \leq \operatorname{ulp}\left(b_{0} b_{1}\right)<\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that

$$
\begin{aligned}
\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right) & =a_{0} \otimes a_{1}-b_{0} \otimes b_{1} \\
\operatorname{ulp}\left(b_{0} b_{1}\right) & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| & \leq\left(\frac{1}{4}+\frac{1}{2}\right) \operatorname{ulp}\left(a_{0} a_{1}\right) \\
& \leq \epsilon \cdot\left(\frac{3}{2} a_{0} a_{1}\right)
\end{aligned}
$$

Case R4

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Case R4

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that

$$
\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)=a_{0} \otimes a_{1}-b_{0} \otimes b_{1}
$$

Case R4

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Note that

$$
\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)=a_{0} \otimes a_{1}-b_{0} \otimes b_{1}
$$

Consequently,

$$
\begin{aligned}
\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| & \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} a_{1}\right)+\frac{1}{2} \operatorname{ulp}\left(b_{0} b_{1}\right) \\
& \leq \epsilon \cdot\left(a_{0} a_{1}+b_{0} b_{1}\right)
\end{aligned}
$$

Absolute Complex Error

- Imaginary error: $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)$

Absolute Complex Error

- Imaginary error: $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)$
- Case R1: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+2 \epsilon^{2}\left|z_{0} z_{1}\right|$

$$
\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon(\sqrt{32 / 7}+2 \epsilon)\left|z_{0} z_{1}\right|
$$

Absolute Complex Error

- Imaginary error: $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)$
- Case R1: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+2 \epsilon^{2}\left|z_{0} z_{1}\right|$ $\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon(\sqrt{32 / 7}+2 \epsilon)\left|z_{0} z_{1}\right|$
- Case R2: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(\frac{7}{4} a_{0} a_{1}\right)$
$\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{1024 / 207}\left|z_{0} z_{1}\right|$

Absolute Complex Error

- Imaginary error: $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)$
- Case R1: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+2 \epsilon^{2}\left|z_{0} z_{1}\right|$ $\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon(\sqrt{32 / 7}+2 \epsilon)\left|z_{0} z_{1}\right|$
- Case R2: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(\frac{7}{4} a_{0} a_{1}\right)$
$\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{1024 / 207}\left|z_{0} z_{1}\right|$
- Case R3: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(\frac{3}{2} a_{0} a_{1}\right)$
$\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{256 / 55}\left|z_{0} z_{1}\right|$

Absolute Complex Error

- Imaginary error: $\left|\Im\left(z_{0} z_{1}-z_{2}\right)\right|<\epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)$
- Case R1: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+2 \epsilon^{2}\left|z_{0} z_{1}\right|$ $\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon(\sqrt{32 / 7}+2 \epsilon)\left|z_{0} z_{1}\right|$
- Case R2: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(\frac{7}{4} a_{0} a_{1}\right)$ $\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{1024 / 207}\left|z_{0} z_{1}\right|$
- Case R3: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(\frac{3}{2} a_{0} a_{1}\right)$
$\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{256 / 55}\left|z_{0} z_{1}\right|$
- Case R4: $\left|\Re\left(z_{0} z_{1}-z_{2}\right)\right| \leq \epsilon \cdot\left(a_{0} a_{1}+b_{0} b_{1}\right)$ $\Longrightarrow\left|z_{0} z_{1}-z_{2}\right|<\epsilon \sqrt{5}\left|z_{0} z_{1}\right|$

Worst-Case Multiplicands for $\beta=2$

Theorem 2. Assume that

$$
\frac{\left|z_{0} z_{1}-z_{2}\right|}{\left|z_{0} z_{1}\right|}>\epsilon \sqrt{5-n \epsilon}>\epsilon \cdot \max (\sqrt{1024 / 207}, \sqrt{32 / 7}+2 \epsilon)
$$

for some positive integer n. Then $a_{0} \neq b_{0}, a_{1} \neq b_{1}$, and
$a_{0} a_{1}=1 / 2+\left(j_{a a}+1 / 2\right) \epsilon+k_{a a} \epsilon^{2} \quad a_{0} b_{1}=1 / 2+\left(j_{a b}+1 / 2\right) \epsilon+k_{a b} \epsilon^{2}$
$b_{0} a_{1}=1 / 2+\left(j_{b a}+1 / 2\right) \epsilon+k_{b a} \epsilon^{2} \quad b_{0} b_{1}=1 / 2+\left(j_{b b}+1 / 2\right) \epsilon+k_{b b} \epsilon^{2}$
for some integers $j_{x y}, k_{x y}$ satisfying

$$
0 \leq j_{a a}, j_{a b}, j_{b a}, j_{b b}<\frac{n}{4}, \quad\left|k_{a a}\right|,\left|k_{b b}\right|<n, \quad\left|k_{a b}\right|,\left|k_{b a}\right|<\frac{n}{2}
$$

Sketch of Proof

- From the argument in Theorem 1, case R4 must hold: $\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)=\epsilon$, and there is no rounding error introduced in the subtraction.

Sketch of Proof

- From the argument in Theorem 1, case R4 must hold: $\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)=\epsilon$, and there is no rounding error introduced in the subtraction.
- Juggling of inequalities leads to

$$
\begin{gathered}
1 \leq\left|z_{0} z_{1}\right|^{2} \leq \frac{5}{5-n \epsilon} \\
\epsilon^{2}(5-n \epsilon)<\left|z_{0} z_{1}-z_{2}\right|^{2}<5 \epsilon^{2}
\end{gathered}
$$

Sketch of Proof

- From the argument in Theorem 1, case R4 must hold: $\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)=\epsilon$, and there is no rounding error introduced in the subtraction.
- Juggling of inequalities leads to

$$
\begin{gathered}
1 \leq\left|z_{0} z_{1}\right|^{2} \leq \frac{5}{5-n \epsilon} \\
\epsilon^{2}(5-n \epsilon)<\left|z_{0} z_{1}-z_{2}\right|^{2}<5 \epsilon^{2}
\end{gathered}
$$

- Considering what these bounds imply about $a_{0} a_{1}$, $\left|a_{0} a_{1}-a_{0} \otimes a_{1}\right|$, et cetera, provides the result desired.

Computation is Useful!

- At this point, I turned to computation.

Computation is Useful!

- At this point, I turned to computation.
- Pruned exhaustive search of IEEE 754 single-precision inputs, using the results of Theorem 2 to eliminate most of the search space.

Computation is Useful!

- At this point, I turned to computation.
- Pruned exhaustive search of IEEE 754 single-precision inputs, using the results of Theorem 2 to eliminate most of the search space.
- Searching took about 5 CPU-hours.

Computation is Useful!

- At this point, I turned to computation.
- Pruned exhaustive search of IEEE 754 single-precision inputs, using the results of Theorem 2 to eliminate most of the search space.
- Searching took about 5 CPU-hours.
- Worst case inputs:

$$
a_{0}=\frac{3}{4} \quad b_{0}=\frac{3}{4}(1-4 \epsilon) \quad a_{1}=\frac{2}{3}(1+11 \epsilon) \quad b_{1}=\frac{2}{3}(1+5 \epsilon)
$$

Computation is Useful!

- At this point, I turned to computation.
- Pruned exhaustive search of IEEE 754 single-precision inputs, using the results of Theorem 2 to eliminate most of the search space.
- Searching took about 5 CPU-hours.
- Worst case inputs:

$$
a_{0}=\frac{3}{4} \quad b_{0}=\frac{3}{4}(1-4 \epsilon) \quad a_{1}=\frac{2}{3}(1+11 \epsilon) \quad b_{1}=\frac{2}{3}(1+5 \epsilon)
$$

- This suggests a more general form...

Worst-Case Multiplicands for $\beta=2$

Theorem 3. Assume that

$$
\frac{\left|z_{0} z_{1}-z_{2}\right|}{\left|z_{0} z_{1}\right|}>\epsilon \sqrt{5-n \epsilon}>\epsilon \cdot \max (\sqrt{1024 / 207}, \sqrt{32 / 7}+2 \epsilon)
$$

for some $n<\frac{1}{4} \epsilon^{-1 / 2}$ and $\epsilon \leq 2^{-6}$. Then there exist integers c_{0}, d_{0}, $\alpha_{0}, \beta_{0}, c_{1}, d_{1}, \alpha_{1}, \beta_{1}$ satisfying

$$
\begin{array}{lr}
z_{0}=\frac{c_{0}}{d_{0}}\left(1+i+\left(\alpha_{0}+\beta_{0} i\right) \epsilon\right) & z_{1}=\frac{c_{1}}{d_{1}}\left(1+i+\left(\alpha_{1}+\beta_{1} i\right) \epsilon\right) \\
\min \left(\alpha_{0}, \beta_{0}\right)+\min \left(\alpha_{1}, \beta_{1}\right) \geq 0 & 2 c_{0} c_{1}=d_{0} d_{1}<3 n \\
\left|\alpha_{0} \alpha_{1}\right|,\left|\alpha_{0} \beta_{1}\right|,\left|\beta_{0} \alpha_{1}\right|,\left|\beta_{0} \beta_{1}\right|<n & \frac{1}{2}<a_{0}, b_{0}, a_{1}, b_{1}<1
\end{array}
$$

Worst-Case Multiplicands for IEEE 754

- Now an "exhaustive" search is far less exhausting.

Worst-Case Multiplicands for IEEE 754

- Now an "exhaustive" search is far less exhausting.
- The IEEE 754 single-precision worst-case inputs are

$$
a_{0}=\frac{3}{4} \quad b_{0}=\frac{3}{4}(1-4 \epsilon) \quad a_{1}=\frac{2}{3}(1+11 \epsilon) \quad b_{1}=\frac{2}{3}(1+5 \epsilon)
$$

and have a relative error of $\epsilon \cdot \sqrt{4.9999899864}$.

Worst-Case Multiplicands for IEEE 754

- Now an "exhaustive" search is far less exhausting.
- The IEEE 754 single-precision worst-case inputs are

$$
a_{0}=\frac{3}{4} \quad b_{0}=\frac{3}{4}(1-4 \epsilon) \quad a_{1}=\frac{2}{3}(1+11 \epsilon) \quad b_{1}=\frac{2}{3}(1+5 \epsilon)
$$

and have a relative error of $\epsilon \cdot \sqrt{4.9999899864}$.

- The IEEE 754 double-precision worst-case inputs are

$$
a_{0}=\frac{3}{4}(1+4 \epsilon) \quad b_{0}=\frac{3}{4} \quad a_{1}=\frac{2}{3}(1+7 \epsilon) \quad b_{1}=\frac{2}{3}(1+\epsilon)
$$

and have a relative error of $\epsilon \cdot \sqrt{4.9999999999999893}$.

Worst-Case Multiplicands for IEEE 754

- Now an "exhaustive" search is far less exhausting.
- The IEEE 754 single-precision worst-case inputs are

$$
a_{0}=\frac{3}{4} \quad b_{0}=\frac{3}{4}(1-4 \epsilon) \quad a_{1}=\frac{2}{3}(1+11 \epsilon) \quad b_{1}=\frac{2}{3}(1+5 \epsilon)
$$

and have a relative error of $\epsilon \cdot \sqrt{4.9999899864}$.

- The IEEE 754 double-precision worst-case inputs are

$$
a_{0}=\frac{3}{4}(1+4 \epsilon) \quad b_{0}=\frac{3}{4} \quad a_{1}=\frac{2}{3}(1+7 \epsilon) \quad b_{1}=\frac{2}{3}(1+\epsilon)
$$

and have a relative error of $\epsilon \cdot \sqrt{4.9999999999999893}$.

- Clearly $\epsilon \sqrt{5}$ is the best (practical) bound possible.

Roots of Unity

- We have the best possible error bound on multiplication, but for FFTs we still need a bound on the errors in the precomputed roots of unity.

Roots of Unity

- We have the best possible error bound on multiplication, but for FFTs we still need a bound on the errors in the precomputed roots of unity.
- Even if your CPU provides exactly rounded transcendental functions, $\cos \left(2 \pi k / 2^{n}\right)+i \sin \left(2 \pi k / 2^{n}\right)$ still suffers from rounding in the value of π used and the multiplication $k \otimes \pi$, in addition to the two trigonometric evaluations.

Roots of Unity

- We have the best possible error bound on multiplication, but for FFTs we still need a bound on the errors in the precomputed roots of unity.
- Even if your CPU provides exactly rounded transcendental functions, $\cos \left(2 \pi k / 2^{n}\right)+i \sin \left(2 \pi k / 2^{n}\right)$ still suffers from rounding in the value of π used and the multiplication $k \otimes \pi$, in addition to the two trigonometric evaluations.
- Many FFT implementations use shockingly inaccurate iterations to compute roots of unity.

Roots of Unity

- We have the best possible error bound on multiplication, but for FFTs we still need a bound on the errors in the precomputed roots of unity.
- Even if your CPU provides exactly rounded transcendental functions, $\cos \left(2 \pi k / 2^{n}\right)+i \sin \left(2 \pi k / 2^{n}\right)$ still suffers from rounding in the value of π used and the multiplication $k \otimes \pi$, in addition to the two trigonometric evaluations.
- Many FFT implementations use shockingly inaccurate iterations to compute roots of unity.
- It is possible to compute the 2^{n} th roots of unity in $\frac{27}{32} \cdot 2^{n}+\mathrm{O}(n)$ FLOPS with a maximum error $<2 \epsilon$.

Roots of Unity

- We have the best possible error bound on multiplication, but for FFTs we still need a bound on the errors in the precomputed roots of unity.
- Even if your CPU provides exactly rounded transcendental functions, $\cos \left(2 \pi k / 2^{n}\right)+i \sin \left(2 \pi k / 2^{n}\right)$ still suffers from rounding in the value of π used and the multiplication $k \otimes \pi$, in addition to the two trigonometric evaluations.
- Many FFT implementations use shockingly inaccurate iterations to compute roots of unity.
- It is possible to compute the 2^{n} th roots of unity in $\frac{27}{32} \cdot 2^{n}+\mathrm{O}(n)$ FLOPS with a maximum error $<2 \epsilon$.
- ... I need to find time to write this paper some day.

A Historical Note

"Indeed, in unpublished work R.P. Brent has demonstrated that in base 2, for example, [the error term] can be reduced to $\sqrt{5} \ldots$ "

\author{

- F.W.J. Olver, 1986
}

References

- N.J. Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, 2002.
- C. Percival, Rapid multiplication modulo the sum and difference of highly composite numbers, Math. Comp. 72 (2002), 387-395.
- R.P. Brent, C. Percival, P. Zimmermann, Error bounds on complex fbating-point multiplication, Math. Comp., to appear.

