o .

Rounding Errorsin Complex
Floating-Point M ultiplication

Colin Percival

cperciva@rnacs. sfu. ca

IRMACS, Simon Fraser University

Rounding Errors in Complex Floating-Point Multiplication — p.1/2:

Review of Floating-Point Arithmetic

f # Floating-point values are expressed as a sign, T
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.2/2:

Review of Floating-Point Arithmetic
- -

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m
where {s,e,m} CN,0<e < E, 871 <m < ¢, and

3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.2/2:

Review of Floating-Point Arithmetic

o .

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

In |IEEE 754 “double precision” arithmetic, 5 = 2, t = 53,
B = 1075 and E = 2047.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.2/2:

Review of Floating-Point Arithmetic

o .

Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

In |IEEE 754 “double precision” arithmetic, 5 = 2, t = 53,
B = 1075 and E = 2047.

#® There are also denormals, infinities, and NaNs, but In
numerical code they usually never occur.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.2/2:

Terminology

f # Denote by ¢, 6, and ® the results of rounded T
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.3/2:

Terminology
- -

Denote by ¢, 6, and ® the results of rounded
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.
Note that for = #£ 0,

ulp((=1)*- 877 -m) = 77

and ulp(z) < z - g1,

o -

Rounding Errors in Complex Floating-Point Multiplication — p.3/2:

Terminology
- -

Denote by ¢, 6, and ® the results of rounded
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.
Note that for = #£ 0,

ulp((=1)*- 77 - m) = g °
and ulp(z) < z - g1,
® Also define € = 1ulp(1) = 351,
- : : o

Rounding Errors in Complex Floating-Point Multiplication — p.3/2:

Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.4/2:

Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

In round-to-nearest mode on IEEE 754 systems,

(2 4+9) ~ (&)| < ulp(e +9)

(2~) ~ ()| < Julp(z —)

(2y) ~ (2 ©9)| < Sulp(ay)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.4/2:

Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

In round-to-nearest mode on IEEE 754 systems,

(z+y) —(zdy)| < %ulp(x+y) <€z +y)

(2~ 9) ~ (10 9)| < Julp(z —y) < ez — 1)

(o) — (x @)| < Sulp(ay) < e(zy)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.4/2:

Complex Rounding Errors

o .

#® For complex zg = ag + ibg, z1 = a1 + iby, If we compute
29 = a9 + by = (CL() D al) -+ i(bo B bl), then

(20 + 21) — 22| = 1/ (a0 +a1) — az)? + ((bo + b1) — by)?

< \/(E‘ao —I-CL1D2 + (E‘bo —|-51D2 — E‘Zo —I-Zﬂ

o -

Rounding Errors in Complex Floating-Point Multiplication — p.5/2:

Complex Rounding Errors

o .

#® For complex zg = ag + ibg, z1 = a1 + iby, If we compute
29 = a9 + by = (CL() D al) -+ i(b() oy, bl), then

(20 + 21) — 22| = 1/ (a0 +a1) — az)? + ((bo + b1) — by)?

< \/(6 ‘CL() + CL1D2 + (6 ‘bo + bl‘)Q = € ‘Z() + le
#® Problem: If we compute

r9 = (ag ®a1) © (bg ® by)
Y2 = (ag ® b1) @ (bp ® ay),

what is the smallest a such that |zgz; — 22| < ea|z921| ?

o -

Rounding Errors in Complex Floating-Point Multiplication — p.5/2:

M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.6/2:

M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

o Finite Field arithmetic is slow on most CPUSs.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.6/2:

M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

» Finite Field arithmetic is slow on most CPUs.
s Floating-Point arithmetic has rounding errors.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.6/2:

-

#® The Fast Fourier Transform makes large polynomial

M otivation

=

(and integer) arithmetic practical.

» Finite Field arithmetic is slow on most CPUs.
s Floating-Point arithmetic has rounding errors.

Theorem [Percival, 2002]: The FFT allows accurate
computation of the cyclic convolution z = x x y of two
vectors of length NV = 2" of Gaussian integers if

2] - |yl - (1 4+ € (1 + €)1+ 8" — 1) < %

where e« IS the maximum relative error of complex
multiplication, and (5 is the maximum error in the
precomputed complex roots of unity used. J

Rounding Errors in Complex Floating-Point Multiplication — p.6/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].
® We can take o = +/5 [Percival, 2002].

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

» Unfortunately the proof was wrong...

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

» Unfortunately the proof was wrong...

s ... and it took five years before anyone noticed!

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:

Error Bound

fTheorem 1. [Brent, Percival, Zimmermann, 2006] T
Let 29 = ag + bpt and 21 = a1 + D11, with ag, by, a1, by

floating-point values with ¢-digit base-(3 significands, and
20 = ((ap ® a1) © (by ® b)) + ((ao ® b1) ® (by ® a1))i.

Providing that no overflow or underflow occur, no denormal
values are produced, arithmetic results are correctly rounded

to a nearest representable value, zpz; # 0, and 6t > 29

1
L ‘Z()Zl — ZQ‘ < 561 ! ’2021’ = 6\/5 ’ZOZl‘ : J

Rounding Errors in Complex Floating-Point Multiplication — p.8/2:

Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

o -

Rounding Errors in Complex Floating-Point Multiplication — p.9/2:

Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

o -

Rounding Errors in Complex Floating-Point Multiplication — p.9/2:

Equivalent Inputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

o -

Rounding Errors in Complex Floating-Point Multiplication — p.9/2:

Equivalent Inputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when
® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

® 3 <aqg < 1, by multiplying zo by powers of 2, and

o -

Rounding Errors in Complex Floating-Point Multiplication — p.9/2:

Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

< ag < 1, by multiplying zy by powers of 2, and

e
= DN

< apaq < 1, by multiplying z; by powers of 2,

none of which affect the resulting relative error.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.9/2:

lmaginary Error

o .

To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

Rounding Errors in Complex Floating-Point Multiplication — p.10/2:

lmaginary Error

o .

To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.10/2:

lmaginary Error

o .

To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)
s Case 12: ulp(ag ® b1 + bg ® a1) < ulp(agb; + bpar)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.10/2:

lmaginary Error

o .

To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)
s Case 12: ulp(ag ® b1 + bg ® a1) < ulp(agb; + bpar)
#® |n each case, we find that

|(CLO ® b1 + by ® a1) — ((CL() &) b1) D (bo &) al))] < 6-(aob1+boa1)

and thus

|%(Z()21 — ZQ)’ < €- (2&0[91 + 2[)()&1).

o -

Rounding Errors in Complex Floating-Point Multiplication — p.10/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: ulp(ag®a; — by ®b1) < ulp(bgby) < ulp(apay)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

-

To bound the real error |R(zpz1 — 22)|, we will consider

four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: p(CL() Qa1 — by ® bl) < ulp(bob1) < ulp(aoal)
s Case R4: ulp(ag® a1 —by ®b1) < ulp(bgby) = ulp(agpar)

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:
s Case R1: (bO) < ulp(aoal) < ulp(ao ® a1 — by ® by
s Case R2: ulp(bpb1) < ulp(ag ® a1 — by ® b1) < ulp(agay
s Case R3: ulp(ao Qa1 — by ® bl) < ulp(bob1) < ulp(a0a1
o Case R4: ulp(ag® a1 — by ®b1) < ulp(bpb1) = ulp(agay

)
)
)
)

® Since we have assumed that 0 < bgb; < agay, these four
cases cover all possible inputs.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

Real Error

o .

To bound the real error |R(zpz1 — 22)|, we will consider
four cases:
s Case R1: (bO) < ulp(aoal) < ulp(ao Qa1 — by ® bl)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: ulp(ao Qa1 — by ® bl) < ulp(bob1) < ulp(aoal)
s Case R4: ulp(ag® a1 —by ®b1) < ulp(bgby) = ulp(agpar)

® Since we have assumed that 0 < bgb; < agay, these four
cases cover all possible inputs.

Once we have bounds on the real error for each of
these cases, we can combine them with the imaginary
error bound to obtain a bound on the complex error.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.11/2:

CaseR1
| -

ulp(bob1) < ulp(apa1) < ulp(ag ® a1 — by @ b1)

CaseR1
| -

ulp(bpb1) < ulp(apay) < ulp(ag ® ar — by ® by)
Note that

1
§u1p(a0 ® a; — by ® bl) < € - (CL()CL1 — bob; + G(Cboal + bObl))

o -

Rounding Errors in Complex Floating-Point Multiplication — p.12/2:

CaseR1
| -

ulp(bpb1) < ulp(apay) < ulp(ag ® ar — by ® by)
Note that

1
§u1p(a0 ® a; — by ® bl) < € - (a0a1 — bob; + G(Cboal + bObl))

Consequently,

1 1 1
1R(2021 — 22)| < §ulp(bobl) + Qulp(aom) + §ulp(ao R a; — by ® by)

VAN

1 2
§ulp(b0b1) + §ulp(ao K a; — by ® bl)
€

VAN

- (2&0@1 — bobl) -+ 26’ |Z()Z1|

o -

Rounding Errors in Complex Floating-Point Multiplication — p.12/2:

CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)

CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)
Note that ulp(z) < ulp(y) implies ulp(z) < sulp(y), i.e

ulp(bpb1) < sulp(ap ® a1 — by ® b1)

ulp(ag ® a1 — by ® b1) < =ulp(agaq)

l\DIHN)Ir—\

o -

Rounding Errors in Complex Floating-Point Multiplication — p.13/2:

CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)
Note that ulp(z) < ulp(y) implies ulp(z) < sulp(y), i.e

ulp(bpby) < % Ip(ag ® a1 — by ® by)
ulp(ag ® a1 — bg ® by) < % Ip(apar)
Consequently,
1R(z021 — 22)| < (1 + d + 1) -ulp(aga)
8 4 2

7

- << (qum) -

Rounding Errors in Complex Floating-Point Multiplication — p.13/2:

CaseR3
| -

ulp(ag ® a1 — by ® b1) < ulp(bob1) < ulp(apay)

CaseR3
| -

ulp(ap ® a1 — by ® b1) < ulp(bob1) < ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

1
ulp(bgby) < éulp(aoal)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.14/2.

CaseR3
| -

ulp(ap ® a1 — by ® b1) < ulp(bob1) < ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by
1
ulp(bgby) < éulp(aoal)

Consequently,

I 1

1R(z021 — 22)| < (Z + 5) ulp(agay)

- <l -

Rounding Errors in Complex Floating-Point Multiplication — p.14/2.

Case R4
| -

ulp(ap ® a1 — bo @ b1) < ulp(bob1) = ulp(apar)

Case R4
| -

ulp(ap ® a1 — bp ® b1) < ulp(bob1) = ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

o -

Rounding Errors in Complex Floating-Point Multiplication — p.15/2:

Case R4
| -

ulp(ap ® a1 — bp ® b1) < ulp(bob1) = ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

Consequently,

1 1
R(z021 — 22)| < éulp(aoal) + §ulp(bob1)

< € (CL()CL1 + b()bl)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.15/2:

Absolute Complex Error

o .

|maginary error: |3 (2021 — 22)| < € - (2apb1 + 2bpay)

Absolute Complex Error

o .

|maginary error: |3 (2021 — 22)| < € - (2apb1 + 2bpay)
® Case R1: |R(z0z1 — 22)| < €- (2apa1 — bob1) + 2€* | 2921

—> |z021 — 22| < € (\/32/7—|—26) 2021

o -

Rounding Errors in Complex Floating-Point Multiplication — p.16/2:

Absolute Complex Error
-

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/32/7%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)
= > ’Z()Zl — 22| < E\/1024/207 |Z()Zl‘

-

Rounding Errors in Complex Floating-Point Multiplication — p.16/2:

Absolute Complex Error
-

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/32/7%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)

= > ’Z()Zl — 22| < E\/1024/207 |Z()Zl‘

Case R3: \%(2021 — 22)‘ < € (%aoal)
= |2021 — 22| < €4/256/55 |2021|

-

Rounding Errors in Complex Floating-Point Multiplication — p.16/2:

Absolute Complex Error

=

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/m%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)

— |2021 — 22| < €4/1024/207 | 2021 |

Case R3: [R(2021 — 22)| < €+ (3apa1)

= |2021 — 22| < €4/256/55 |2021|

Case R4 ‘%(Z()Zl — 22)‘ < €- ((IL()al + b()bl)
— |z2021 — 22| < V5 |2021]

-

Rounding Errors in Complex Floating-Point Multiplication — p.16/2:

Wor st-Case M ultiplicandsfor 5 = 2
-

Theorem 2. Assume that

2021 — 23]
2021

> ev/5 — ne > ¢ - max (¢1024/207, V/32/7 + ze)

for some positive integer n. Then ag # by, a1 #* by, and

apal = 1/2 + (jaa + 1/2)6 + kaa€2 apb; = 1/2 -+ (jab + 1/2)6 + ka,b€2
boar = 1/2 4 (jpa + 1/2)€ + kpa€® bobr = 1/2 + (jp + 1/2)€ + kype”

for some integers j,, kyy satisfying

n n

0 < jaaaja,bajbaajbb < Za |ka,a|) |kbb| <n, |kab| 9 ’kba’ < 5

o -

Rounding Errors in Complex Floating-Point Multiplication — p.17/2:

Sketch of Proof

o .

From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
iIntroduced in the subtraction.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.18/2:

Sketch of Proof
-

f #® From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
introduced in the subtraction.

Juggling of inequalities leads to

5
1 < |zo21]* < o

e2(5 — ne) < |z021 — 22|° < 5€2

o -

Rounding Errors in Complex Floating-Point Multiplication — p.18/2:

Sketch of Proof
-

f #® From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
introduced in the subtraction.

Juggling of inequalities leads to

5
1 < |zo21]* < o

e2(5 — ne) < |z021 — 22|° < 5€2

Considering what these bounds imply about agaq,
lapa1 — ag ® ay|, €t cetera, provides the result desired.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.18/2:

Computation i1s Useful!
-

At this point, | turned to computation.

Computation i1s Useful!

o .

At this point, | turned to computation.

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem
2 to eliminate most of the search space.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.19/2.

Computation i1s Useful!

o .

At this point, | turned to computation.

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem
2 to eliminate most of the search space.

s Searching took about 5 CPU-hours.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.19/2.

Computation i1s Useful!

f.o At this point, | turned to computation. T

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem

2 to eliminate most of the search space.
s Searching took about 5 CPU-hours.
» Worst case Inputs:

3 3 2 2
ao 1 bo 4(6) aq 3(+ 6) by 3(+ 56)

o -

Rounding Errors in Complex Floating-Point Multiplication — p.19/2.

Computation i1s Useful!

f.o At this point, | turned to computation. T

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem

2 to eliminate most of the search space.
s Searching took about 5 CPU-hours.
» Worst case Inputs:

3 3 2 2
a():Z 6021(1—46) alzg(l—l—lle) b1:§(1—|—5€)

This suggests a more general form...

o -

Rounding Errors in Complex Floating-Point Multiplication — p.19/2.

Wor st-Case M ultiplicandsfor 5 = 2

- .

heorem 3. Assume that

2021 — 22|
2021

> ev/5 — e > ¢ - max (\/1024/207, V/32/7 + 26)

for some n < ie_lﬂ and € < 270 Then there exist integers cy, dp,
oo, Bo, c1, d1, a1, 81 satisfying

20 = d(1+z+(ozo+ﬁoz)) 2] = d(1+z+(041+ﬁ12))
0 1

min (o, By) + min(ag, G1) > 0 2coc1 = dopdy < 3n
1

lapail, |aoBr], [Boaal, [Bofi| < n 5 < a0,b0,a1,01 <1.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.20/2:

Wor st-Case M ultiplicands for |EEE 754
B o

Now an “exhaustive” search Is far less exhausting.

Wor st-Case M ultiplicands for |EEE 754
B o

Now an “exhaustive” search Is far less exhausting.
The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+5€)

and have a relative error of ¢ - v/4.9999899864.

Rounding Errors in Complex Floating-Point Multiplication — p.21/2:

Wor st-Case M ultiplicands for |EEE 754
B o

Now an “exhaustive” search Is far less exhausting.
The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+56)

and have a relative error of € - v/4.9999899864.
The IEEE 754 double-precision worst-case inputs are

3 3 2 2
= —(14+14 = — = —(1+ = —(1+
ao 4(1 €) by 1 a1 3(7€) by 3(€)

and have a relative error of ¢ - v/4.9999999999999893.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.21/2:

Wor st-Case M ultiplicands for |EEE 754
B o

Now an “exhaustive” search Is far less exhausting.
The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+56)

and have a relative error of € - v/4.9999899864.
The IEEE 754 double-precision worst-case inputs are

3 3 2 2
= —(14+14 = — = —(1+ = —(1+
ao 4(1 €) by 1 a1 3(7€) by 3(€)

and have a relative error of € - v/4.9999999999999893.
L ® Clearly ev/5 is the best (practical) bound possible.

-

Rounding Errors in Complex Floating-Point Multiplication — p.21/2:

Roots of Unity

o .

We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.22/2.

Roots of Unity

o .

We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.22/2.

Roots of Unity
-

We have the best possible error bound on T
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.22/2.

Roots of Unity
-

We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

® |t is possible to compute the 2"th roots of unity In
=0 -2" + O(n) FLOPS with a maximum error < 2e.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.22/2.

Roots of Unity
-

We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

® |t is possible to compute the 2"th roots of unity In
=0 -2" + O(n) FLOPS with a maximum error < 2e.

L s ... | need to find time to write this paper some day. J

Rounding Errors in Complex Floating-Point Multiplication — p.22/2:

A Historical Note

“Indeed, in unpublished work R.P. Brent has
demonstrated that in base 2, for example, [the error

term] can be reduced to /5 ..."
— EW.J. Olver, 1986

-

Rounding Errors in Complex Floating-Point Multiplication — p.23/2:

References

f # N.J. Higham, Accuracy and Stability of Numerical T
Algorithms, Second Edition, SIAM, 2002.

C. Percival, Rapid multiplication modulo the sum and
difference of highly composite nhumbers, Math. Comp.
72 (2002), 387—395.

R.P. Brent, C. Percival, P. ZImmermann, Error bounds
on complex fbating-point multiplication, Math. Comp.,
to appear.

o -

Rounding Errors in Complex Floating-Point Multiplication — p.24/2.

	Review of Floating-Point Arithmetic
	Terminology
	Floating-Point Rounding Errors
	Complex Rounding Errors
	Motivation
	Previous Bounds
	Error Bound
	Equivalent Inputs
	Imaginary Error
	Real Error
	Case R1
	Case R2
	Case R3
	Case R4
	Absolute Complex Error
	Worst-Case Multiplicands for $�eta = 2$
	Sketch of Proof
	Computation is Useful!
	Worst-Case Multiplicands for $�eta = 2$
	Worst-Case Multiplicands for {IEEE 754}
	Roots of Unity
	A Historical Note
	References

