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Review of Floating-Point Arithmetic

f # Floating-point values are expressed as a sign, T
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

o -
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Review of Floating-Point Arithmetic
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# Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m
where {s,e,m} CN,0<e < E, 871 <m < ¢, and

3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

o -
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Review of Floating-Point Arithmetic

o .

# Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

# In |IEEE 754 “double precision” arithmetic, 5 = 2, t = 53,
B = 1075 and E = 2047.

o -
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Review of Floating-Point Arithmetic

o .

# Floating-point values are expressed as a sign,
significand, and exponent, e.g.,

(_1)3 _ ﬁe—B .m

where {s,e,m} CN,0<e < E, 871 <m < ¢, and
3,t, B, E are parameters of the floating-point system
being used.

® As a special case, e =0 and m = 3!~ ! represents £0.

# In |IEEE 754 “double precision” arithmetic, 5 = 2, t = 53,
B = 1075 and E = 2047.

#® There are also denormals, infinities, and NaNs, but In
numerical code they usually never occur.

o -
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Terminology

f # Denote by ¢, 6, and ® the results of rounded T
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.

o -
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Terminology
- -

# Denote by ¢, 6, and ® the results of rounded
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.
# Note that for = #£ 0,

ulp((=1)*- 877 -m) = 77

and ulp(z) < z - g1,

o -
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Terminology
- -

# Denote by ¢, 6, and ® the results of rounded
floating-point addition, subtraction, and multiplication,
and define the “unit in the last place” ulp(x) for x # 0 as
the (unique) power of 5 such that

gl < lz| /ulp(z) < Ik

and ulp(0) = 0.
# Note that for = #£ 0,

ulp((=1)*- 77 - m) = g °
and ulp(z) < z - g1,
® Also define € = 1ulp(1) = 351,
- : : o

Rounding Errors in Complex Floating-Point Multiplication — p.3/2:



Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

o -
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Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

# In round-to-nearest mode on IEEE 754 systems,

(2 4+9) ~ (& )| < ulp(e +9)

(2~ ) ~ ()| < Julp(z — )

(2y) ~ (2 ©9)| < Sulp(ay)

o -
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Floating-Point Rounding Errors

o .

#® |EEE 754 requires that arithmetic operations produce
results which are exactly rounded, i.e., the same as if
the values were computed to infinite precision prior to
rounding.

# In round-to-nearest mode on IEEE 754 systems,

(z+y) —(zdy)| < %ulp(x+y) <€z +y)

(2~ 9) ~ (10 9)| < Julp(z —y) < ez — 1)

(o) — (x @ )| < Sulp(ay) < e(zy)

o -
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Complex Rounding Errors

o .

#® For complex zg = ag + ibg, z1 = a1 + iby, If we compute
29 = a9 + by = (CL() D al) -+ i(bo B bl), then

(20 + 21) — 22| = 1/ (a0 +a1) — az)? + ((bo + b1) — by)?

< \/(E‘ao —I-CL1D2 + (E‘bo —|-51D2 — E‘Zo —I-Zﬂ

o -
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Complex Rounding Errors

o .

#® For complex zg = ag + ibg, z1 = a1 + iby, If we compute
29 = a9 + by = (CL() D al) -+ i(b() oy, bl), then

(20 + 21) — 22| = 1/ (a0 +a1) — az)? + ((bo + b1) — by)?

< \/(6 ‘CL() + CL1D2 + (6 ‘bo + bl‘)Q = € ‘Z() + le
#® Problem: If we compute

r9 = (ag ®a1) © (bg ® by)
Y2 = (ag ® b1) @ (bp ® ay),

what is the smallest a such that |zgz; — 22| < ea|z921| ?

o -
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M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

o -
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M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

o Finite Field arithmetic is slow on most CPUSs.

o -
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M otivation

o .

#® The Fast Fourier Transform makes large polynomial
(and integer) arithmetic practical.

» Finite Field arithmetic is slow on most CPUs.
s Floating-Point arithmetic has rounding errors.

o -
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#® The Fast Fourier Transform makes large polynomial

M otivation

=

(and integer) arithmetic practical.

» Finite Field arithmetic is slow on most CPUs.
s Floating-Point arithmetic has rounding errors.

Theorem [Percival, 2002]: The FFT allows accurate
computation of the cyclic convolution z = x x y of two
vectors of length NV = 2" of Gaussian integers if

2] - |yl - (1 4+ € (1 + €)1+ 8" — 1) < %

where e« IS the maximum relative error of complex
multiplication, and (5 is the maximum error in the
precomputed complex roots of unity used. J
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Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

-
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Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

-

Rounding Errors in Complex Floating-Point Multiplication — p.7/2:



Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].
® We can take o = +/5 [Percival, 2002].

-
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Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

-
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Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

» Unfortunately the proof was wrong...

-
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Previous Bounds

® We can take a = v/8 [Higham, Accuracy and Stability of
Numerical Algorithms].

#® We can take a = /16/3 [Olver, 1986].

® We can take o = +/5 [Percival, 2002].

» Conjectured based on comparing the results of
single-precision and double-precision complex
multiplication of several million randomly chosen
Inputs.

» Unfortunately the proof was wrong...

s ... and it took five years before anyone noticed!

-
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Error Bound

fTheorem 1. [Brent, Percival, Zimmermann, 2006] T
Let 29 = ag + bpt and 21 = a1 + D11, with ag, by, a1, by

floating-point values with ¢-digit base-(3 significands, and
20 = ((ap ® a1) © (by ® b)) + ((ao ® b1) ® (by ® a1))i.

Providing that no overflow or underflow occur, no denormal
values are produced, arithmetic results are correctly rounded

to a nearest representable value, zpz; # 0, and 6t > 29

1
L ‘Z()Zl — ZQ‘ < 561 ! ’2021’ = 6\/5 ’ZOZl‘ : J
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Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

o -
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Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

o -
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Equivalent Inputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

o -
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Equivalent Inputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when
® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

® 3 <aqg < 1, by multiplying zo by powers of 2, and

o -
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Equivalent I nputs

-

Without loss of generality, we can assume the greatest
possible relative error occurs when

=

® 0 <aqg,by,ay, by, by multiplying by powers of i,

® bob1 < apaq, by taking complex congugates and
multiplying zg, z1 by 1,

® boa1 < agby, by swapping zy and zq,

< ag < 1, by multiplying zy by powers of 2, and

e
= DN

< apaq < 1, by multiplying z; by powers of 2,

none of which affect the resulting relative error.

o -
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lmaginary Error

o .

# To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:
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lmaginary Error

o .

# To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)

o -
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lmaginary Error

o .

# To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)
s Case 12: ulp(ag ® b1 + bg ® a1) < ulp(agb; + bpar)

o -
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lmaginary Error

o .

# To bound the imaginary error |3(zpz1 — 22)|, we consider
two cases:

s Case ll: ulp(a0b1 + b()al) < ulp(ao ® b1 + by ® al)
s Case 12: ulp(ag ® b1 + bg ® a1) < ulp(agb; + bpar)
#® |n each case, we find that

|(CLO ® b1 + by ® a1) — ((CL() &) b1) D (bo &) al))] < 6-(aob1+boa1)

and thus

|%(Z()21 — ZQ)’ < €- (2&0[91 + 2[)()&1).

o -
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)

o -
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)

o -
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: ulp(ag®a; — by ®b1) < ulp(bgby) < ulp(apay)

o -
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Real Error

-

# To bound the real error |R(zpz1 — 22)|, we will consider

four cases:

s Case R1: ulp(bgby) < ulp(apar) < ulp(ag® a; — by ® by)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: p(CL() Qa1 — by ® bl) < ulp(bob1) < ulp(aoal)
s Case R4: ulp(ag® a1 —by ®b1) < ulp(bgby) = ulp(agpar)
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:
s Case R1: (bO ) < ulp(aoal) < ulp(ao ® a1 — by ® by
s Case R2: ulp(bpb1) < ulp(ag ® a1 — by ® b1) < ulp(agay
s Case R3: ulp(ao Qa1 — by ® bl) < ulp(bob1) < ulp(a0a1
o Case R4: ulp(ag® a1 — by ®b1) < ulp(bpb1) = ulp(agay

)
)
)
)

® Since we have assumed that 0 < bgb; < agay, these four
cases cover all possible inputs.

o -
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Real Error

o .

# To bound the real error |R(zpz1 — 22)|, we will consider
four cases:
s Case R1: (bO ) < ulp(aoal) < ulp(ao Qa1 — by ® bl)
s Case R2: ulp(bpb1) < ulp(ag®ay —bg®b1) < ulp(apay)
s Case R3: ulp(ao Qa1 — by ® bl) < ulp(bob1) < ulp(aoal)
s Case R4: ulp(ag® a1 —by ®b1) < ulp(bgby) = ulp(agpar)

® Since we have assumed that 0 < bgb; < agay, these four
cases cover all possible inputs.

# Once we have bounds on the real error for each of
these cases, we can combine them with the imaginary
error bound to obtain a bound on the complex error.

o -
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CaseR1
| -

ulp(bob1) < ulp(apa1) < ulp(ag ® a1 — by @ b1)



CaseR1
| -

ulp(bpb1) < ulp(apay) < ulp(ag ® ar — by ® by)
Note that

1
§u1p(a0 ® a; — by ® bl) < € - (CL()CL1 — bob; + G(Cboal + bObl))

o -
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CaseR1
| -

ulp(bpb1) < ulp(apay) < ulp(ag ® ar — by ® by)
Note that

1
§u1p(a0 ® a; — by ® bl) < € - (a0a1 — bob; + G(Cboal + bObl))

Consequently,

1 1 1
1R(2021 — 22)| < §ulp(bobl) + Qulp(aom) + §ulp(ao R a; — by ® by)

VAN

1 2
§ulp(b0b1) + §ulp(ao K a; — by ® bl)
€

VAN

- (2&0@1 — bobl) -+ 26’ |Z()Z1|

o -
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CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)



CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)
Note that ulp(z) < ulp(y) implies ulp(z) < sulp(y), i.e

ulp(bpb1) < sulp(ap ® a1 — by ® b1)

ulp(ag ® a1 — by ® b1) < =ulp(agaq)

l\DIHN)Ir—\

o -
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CaseR2
| -

ulp(bob1) < ulp(ap ® a1 — bp ® b1) < ulp(apay)
Note that ulp(z) < ulp(y) implies ulp(z) < sulp(y), i.e

ulp(bpby) < % Ip(ag ® a1 — by ® by)
ulp(ag ® a1 — bg ® by) < % Ip(apar)
Consequently,
1R(z021 — 22)| < (1 + d + 1) -ulp(aga)
8 4 2

7

- << (qum) -
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CaseR3
| -

ulp(ag ® a1 — by ® b1) < ulp(bob1) < ulp(apay)



CaseR3
| -

ulp(ap ® a1 — by ® b1) < ulp(bob1) < ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

1
ulp(bgby) < éulp(aoal)

o -
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CaseR3
| -

ulp(ap ® a1 — by ® b1) < ulp(bob1) < ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by
1
ulp(bgby) < éulp(aoal)

Consequently,

I 1

1R(z021 — 22)| < (Z + 5) ulp(agay)

- <l -
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Case R4
| -

ulp(ap ® a1 — bo @ b1) < ulp(bob1) = ulp(apar)



Case R4
| -

ulp(ap ® a1 — bp ® b1) < ulp(bob1) = ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

o -
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Case R4
| -

ulp(ap ® a1 — bp ® b1) < ulp(bob1) = ulp(apar)
Note that

(ap®a1) © (bop®@b1) =ap® a1 — by @ by

Consequently,

1 1
R(z021 — 22)| < éulp(aoal) + §ulp(bob1)

< € (CL()CL1 + b()bl)

o -
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Absolute Complex Error

o .

# |maginary error: |3 (2021 — 22)| < € - (2apb1 + 2bpay)



Absolute Complex Error

o .

# |maginary error: |3 (2021 — 22)| < € - (2apb1 + 2bpay)
® Case R1: |R(z0z1 — 22)| < €- (2apa1 — bob1) + 2€* | 2921

—> |z021 — 22| < € (\/32/7—|—26) 2021

o -
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Absolute Complex Error
-

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/32/7%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)
= > ’Z()Zl — 22| < E\/1024/207 |Z()Zl‘

-
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Absolute Complex Error
-

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/32/7%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)

= > ’Z()Zl — 22| < E\/1024/207 |Z()Zl‘

Case R3: \%(2021 — 22)‘ < € (%aoal)
= |2021 — 22| < €4/256/55 |2021|

-
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Absolute Complex Error

=

Imaginary error: |3(zpz1 — 22)| < €+ (2a9b1 + 2bgay)
Case R1: [R(zpz1 — 22)| < € (2apa1 — bob1) + 2€2 | 2021
—> |z021 — 22| < € (\/m%— 26) 2021

Case R2: |R(zpz1 — 22)| < € (%aoal)

— |2021 — 22| < €4/1024/207 | 2021 |

Case R3: [R(2021 — 22)| < €+ (3apa1)

= |2021 — 22| < €4/256/55 |2021|

Case R4 ‘%(Z()Zl — 22)‘ < €- ((IL()al + b()bl)
— |z2021 — 22| < V5 |2021]

-
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Wor st-Case M ultiplicandsfor 5 = 2
-

Theorem 2. Assume that

2021 — 23]
2021

> ev/5 — ne > ¢ - max (¢1024/207, V/32/7 + ze)

for some positive integer n. Then ag # by, a1 #* by, and

apal = 1/2 + (jaa + 1/2)6 + kaa€2 apb; = 1/2 -+ (jab + 1/2)6 + ka,b€2
boar = 1/2 4 (jpa + 1/2)€ + kpa€®  bobr = 1/2 + (jp + 1/2)€ + kype”

for some integers j,, kyy satisfying

n n

0 < jaaaja,bajbaajbb < Za |ka,a| ) |kbb| <n, |kab| 9 ’kba’ < 5

o -
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Sketch of Proof

o .

# From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
iIntroduced in the subtraction.

o -
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Sketch of Proof
-

f #® From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
introduced in the subtraction.

# Juggling of inequalities leads to

5
1 < |zo21]* < o

e2(5 — ne) < |z021 — 22|° < 5€2

o -
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Sketch of Proof
-

f #® From the argument in Theorem 1, case R4 must hold:
ulp(bpb1) = ulp(agpai) = €, and there is no rounding error
introduced in the subtraction.

# Juggling of inequalities leads to

5
1 < |zo21]* < o

e2(5 — ne) < |z021 — 22|° < 5€2

# Considering what these bounds imply about agaq,
lapa1 — ag ® ay|, €t cetera, provides the result desired.

o -
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Computation i1s Useful!
-

# At this point, | turned to computation.



Computation i1s Useful!

o .

# At this point, | turned to computation.

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem
2 to eliminate most of the search space.

o -
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Computation i1s Useful!

o .

# At this point, | turned to computation.

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem
2 to eliminate most of the search space.

s Searching took about 5 CPU-hours.

o -
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Computation i1s Useful!

f.o At this point, | turned to computation. T

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem

2 to eliminate most of the search space.
s Searching took about 5 CPU-hours.
» Worst case Inputs:

3 3 2 2
ao 1 bo 4( 6) aq 3( + 6) by 3( + 56)

o -
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Computation i1s Useful!

f.o At this point, | turned to computation. T

s Pruned exhaustive search of IEEE 754
single-precision inputs, using the results of Theorem

2 to eliminate most of the search space.
s Searching took about 5 CPU-hours.
» Worst case Inputs:

3 3 2 2
a():Z 6021(1—46) alzg(l—l—lle) b1:§(1—|—5€)

# This suggests a more general form...

o -
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Wor st-Case M ultiplicandsfor 5 = 2

- .

heorem 3. Assume that

2021 — 22|
2021

> ev/5 — e > ¢ - max (\/1024/207, V/32/7 + 26)

for some n < ie_lﬂ and € < 270 Then there exist integers cy, dp,
oo, Bo, c1, d1, a1, 81 satisfying

20 = d(1+z+(ozo+ﬁoz)) 2] = d(1+z+(041+ﬁ12))
0 1

min (o, By) + min(ag, G1) > 0 2coc1 = dopdy < 3n
1

lapail, |aoBr], [Boaal, [Bofi| < n 5 < a0,b0,a1,01 <1.

o -
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Wor st-Case M ultiplicands for |EEE 754
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# Now an “exhaustive” search Is far less exhausting.



Wor st-Case M ultiplicands for |EEE 754
B o

# Now an “exhaustive” search Is far less exhausting.
# The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+5€)

and have a relative error of ¢ - v/4.9999899864.
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Wor st-Case M ultiplicands for |EEE 754
B o

# Now an “exhaustive” search Is far less exhausting.
# The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+56)

and have a relative error of € - v/4.9999899864.
# The IEEE 754 double-precision worst-case inputs are

3 3 2 2
= —(14+14 = — = —(1+ = —(1+
ao 4(1 €) by 1 a1 3( 7€) by 3( €)

and have a relative error of ¢ - v/4.9999999999999893.

o -
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Wor st-Case M ultiplicands for |EEE 754
B o

# Now an “exhaustive” search Is far less exhausting.
# The IEEE 754 single-precision worst-case inputs are

3 3 2 2
CLO:Z bQ:Z(1—4E) alzg(l—l—lle) b1:§(1+56)

and have a relative error of € - v/4.9999899864.
# The IEEE 754 double-precision worst-case inputs are

3 3 2 2
= —(14+14 = — = —(1+ = —(1+
ao 4(1 €) by 1 a1 3( 7€) by 3( €)

and have a relative error of € - v/4.9999999999999893.
L ® Clearly ev/5 is the best (practical) bound possible.

-
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Roots of Unity

o .

# We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

o -
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Roots of Unity

o .

# We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

# Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

o -
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Roots of Unity
-

# We have the best possible error bound on T
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

# Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

# Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

o -
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Roots of Unity
-

# We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

# Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

# Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

® |t is possible to compute the 2"th roots of unity In
=0 -2" + O(n) FLOPS with a maximum error < 2e.

o -
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Roots of Unity
-

# We have the best possible error bound on
multiplication, but for FFTs we still need a bound on the
errors in the precomputed roots of unity.

# Even if your CPU provides exactly rounded
transcendental functions, cos(27k/2") + i sin(27k /2™) still
suffers from rounding in the value of = used and the

multiplication £ ® 7, In addition to the two trigonometric
evaluations.

# Many FFT implementations use shockingly inaccurate
iterations to compute roots of unity.

® |t is possible to compute the 2"th roots of unity In
=0 -2" + O(n) FLOPS with a maximum error < 2e.

L s ... | need to find time to write this paper some day. J
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A Historical Note

“Indeed, in unpublished work R.P. Brent has
demonstrated that in base 2, for example, [the error

term] can be reduced to /5 ..."
— EW.J. Olver, 1986

-
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