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RAPID MULTIPLICATION
MODULO THE SUM AND DIFFERENCE
OF HIGHLY COMPOSITE NUMBERS

COLIN PERCIVAL

ABSTRACT. We extend the work of Richard Crandall et al. to demonstrate
how the Discrete Weighted Transform (DWT) can be applied to speed up
multiplication modulo any number of the form a4+ b where Hp\ab pis small. In
particular this allows rapid computation modulo numbers of the form k-2™ +1.
In addition, we prove tight bounds on the rounding errors which naturally
occur in floating-point implementations of FFT and DWT multiplications.
This makes it possible for FFT multiplications to be used in situations where
correctness is essential, for example in computer algebra packages.

1. INTRODUCTION

In their seminal paper of 1994, Richard Crandall and Barry Fagin introduced
the Discrete Weighted Transform (DWT) as a means of eliminating zero-padding
when performing integer multiplication modulo Mersenne numbers [2]. While this
does not give any improvement in the order of the multiplication, it nevertheless
cuts the transform length (and thus time and memory) in half. For these reasons
the DWT has become a fixture of the search for Mersenne primes [10].

By using the same form of irrational-base representation as is used for Mersenne
numbers, we can in fact eliminate the zero-padding when working modulo a + b
provided that Hp‘ b P is sufficiently small that we have enough precision. Essen-
tially, as with Mersenne numbers, we choose the base so that the reduction modulo
2™ — 1 implicit in the FFT multiplication turns into a reduction modulo a =+ b.

As a result of decisions made in the design of modern processors, it is generally
much faster to perform FFTs over the complex numbers using floating-point arith-
metic than it is to perform them over finite fields. Consequently, it is very impor-
tant to consider the size of errors which will result from using inexact floating-point
arithmetic. Little work has been done here as far as error bounds go; in practice
implementors have measured the size of errors for a set of random inputs, and have
then chosen parameters which they believe to be “safe”.

Although proven error bounds are quite conservative in practice when dealing
with random inputs, it can be demonstrated that there are some values for which
the error comes quite close to the bound. Because of these “unlucky” input values,

Received by the editor September 12, 2000 and, in revised form, March 15, 2001.
2000 Mathematics Subject Classification. Primary 65G50, 65T50; Secondary 11A51.
Key words and phrases. Rapid multiplication, FFT, rounding errors.

This work was supported by MITACS and NSERC of Canada.

(©2002 American Mathematical Society

387



388 COLIN PERCIVAL

proven error bounds should be quite useful in applications such as computer algebra
packages where the correctness of multiplication is implicitly assumed.

2. MULTIPLICATION MODULO z&V — 1

The FFT has an interesting hybrid nature, in that it arises naturally in two
distinct domains. Although it is best known from signal processing as a means
of mapping between signal space and frequency space, the FFT also arises as the
“obvious” way of evaluating or interpolating a polynomial at the N = 2"th roots
of unity.

From these two viewpoints, the FFT multiplication can be seen as either a cyclic
convolution of two signals (which is equivalent to the product of the corresponding
polynomials modulo z%V — 1), or as a process of evaluating polynomials, multiplying
the results pointwise, and interpolating the product polynomial, where the reduc-
tion modulo 2V — 1 results from the fact that ¥ —1 =[], ~_, (z — w). (For more
details, see [5].)

Since this paper is not intended to serve as a reference on how to perform FFTs
rapidly, we will merely note that it is very easy to perform FFTs “badly”, and that
a good implementation should use a radix appropriate to the processor and be very
much aware of caches, page translation look-aside buffers (TLBs), and in the case of
parallel or disk-based transforms, the physical location of the data. Much has been
written about such implementation issues, and the interested reader is encouraged
to consult [4] and [1].

For our purposes in this paper, we consider the multiplication ¢(z) = a(x)b(x)
mod 2V —1 (X cix® = a;2* Y by mod xV —1) to represent the process of com-
where FFT and FFT~! represent the unnormalized FFT and the unnormalized
inverse FFT respectively. We will give a (somewhat) more detailed description of
the FFT process when we compute error bounds later.

Naturally, if we do not wish our answer to be reduced modulo zV — 1, we
need merely ensure that N > deg, a(x) + deg, b(x), by “padding” the polynomials
with zeroes, so that the reduction has no effect. This gives a rapid polynomial
multiplication in any field where the 2™th roots of unity exist; in particular this
includes the complex numbers and some finite fields.

Once we have a fast polynomial multiplication, it is simple to construct a fast
integer multiplication; indeed, multiprecision integers are usually represented in-
ternally as polynomials in some convenient base (often a power of two or of ten),
and the only additional work is to release the carries after the inputs have been
multiplied as polynomials. This provides a simple yet effective fast integer multi-
plication.

A more sophisticated integer multiplication notes that the “polynomials” being
multiplied have coefficients over the real numbers, instead of the complex numbers.
This allows for significant improvement, either by using a real-value FFT, or by
utilizing the DWT to perform a right-angle convolution [2].

3. MULTIPLICATION MODULO a %+ b

Richard Crandall and Barry Fagin define the Discrete Weighted Transform as
the FFT of a weighted signal

(3.1) DWTa(x) = FFT(ax),
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where the juxtaposition of the signal x and the weighting vector a represents the
componentwise product of the two. They then define the weighted convolution of
two signals x and y in analogy with the (unweighted) cyclic convolution as

x*2y = DWT; H(DWTa(x)DWTa(y))
=a 'FFT YFFT(ax)FFT(ay)).
Given these definitions, they observe that the cyclic, right-angle, and negacyclic
convolutions of two signals can be computed as x ** y with a; =1, a; = emid/2N)
and a; = e™3/N respectively.
Of particular interest is their observation that this can speed up multiplication

modulo Mersenne numbers M, = 29 — 1. If we write numbers in the mixed-radix
form

(3.2)

N—1

(3.3) r = Z xjgqu/m’
j=0

then a weighted convolution with

(3.4) a,; = 2[9/N1-aj/N

will correctly multiply two numbers modulo Mg, leaving the product in the same
form. This works because the input weighting transforms the inputs so that they
have a fixed (irrational) radix, and the output weighting transforms them back.
This “irrational-base” DWT makes it possible to effect the modular squaring re-
quired by the Lucas-Lehmer primality test without requiring zero-padding, while
still allowing use of convenient (i.e. highly composite) FFT lengths.

To multiply modulo a — b in general, we can apply the same method. If the
prime factorization of a and b are

ty ¢
a=pi'py ...,
__ 51,52

b=¢qi'qy" ...,

then, given numbers written in the mixed-radix form

N—-1
(3.5) v= S [Tl T a9,
j=0

a weighted convolution with
(3.6) a; = Hp[tij/NW*tij/N . Hqif*Sij/NPrSij/N

7

will correctly multiply two numbers in the given mixed-radix form, for the same
reasons. A multiplication modulo a + b follows the same method but adds another
term in order to effect a negacyclic convolution.

This method, however, has its difficulties. Foremost among them is the problem
of converting into and out of the given mixed-radix form. We know of no efficient
solution to this problem in general. In special cases, however, the conversion is
straightforward: If b = 1 and a = k - 2™ for some small k, the conversion, as with
the Mersenne multiplication, is a matter of splitting the base 2 representation of
the input into variable-sized pieces.

Further, for any number it is reasonably easy to convert in small numbers (0,1,2,
etc.) and detect zero. As most primality testing algorithms currently in use require
nothing more than the ability to input small numbers, multiply, and detect zero,
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we expect that this will prove useful for conducting tests on numbers of this special
form.

Unfortunately, for precision reasons the product Hp‘ab p of prime numbers divid-
ing a and b must be quite small; this will be discussed in detail after error bounds
have been given later in this paper.

4. PrREVIOUS FFT ERROR ESTIMATES

While little has been done so far on proven error bounds, there have been a large
number of error estimates. Indeed, most times that results derived by making use
of FFT multiplications are reported, the authors will find it necessary to devote a
few paragraphs to justifying the correctness of their multiplication, usually on the
basis of a small number of lengths for which errors are computed.

In the paper where they introduce the DWT, Richard Crandall and Barry Fagin
suggest, based on numerical work, that errors should be bounded by O(N 3/21og N )
for standard (positive) digit representations, and by O(N log N) for balanced rep-
resentations [2]. We note that these estimates are for random inputs; for worst-case
inputs, the errors must be of the same order, as any input resulting from an inte-
ger expressed in positive representation can also result from an integer expressed
in balanced representation with a slightly larger base. As we will see later, these
estimates are pessimistic by a factor of v/N.

It is suggested in a later paper that the maximum errors should be roughly
O(v/Nlog Nloglog N) [3]. This is argued based on the hypothesis that the errors
in the FFT resemble a random walk of length N log N. This, in our opinion, is
quite wrong: The FFT errors more closely approximate a random walk of length
log N in an N-dimensional space. It is consequently somewhat surprising that the
error estimate achieved is within a factor of v/loglog N of correct.

Some rigorous work has nevertheless been done. In a paper which considers only
the forward FFT, George Ramos derives upper bounds for the root-mean-square
and maximum errors resulting from the FFT [9]. However, as he is considering the
FFT as a signal-processing operation, where errors appear as added “noise”, he does
not consider the relevance of these bounds to the correctness of FFT multiplication.

A more recent treatment is given in [7], but surprisingly the author reaches a
bound which is suboptimal by a factor of v/N. A slight modification to the proof
can remove the extraneous factor.

Finally, Donald Knuth, in his Seminumerical Algorithms [§] gives an error bound
for FF'T multiplications implemented with fixed-point arithmetic. This bound is
however extremely pessimistic, weighing in at roughly O(N®). As a result it is
interesting only as a curiosity.

5. FFT ERROR BOUNDS

In contrast to the heuristic and statistical treatments discussed in the preceeding
section, it is quite possible to prove a rigorous bound on the maximum error, as
shown by the following theorem:

Theorem 5.1. The FFT allows computation of the cyclic convolution z = x xy of
two vectors of length N = 2" of complex values such that

|2 = 2loo < la] - [yl - (1 + " (1 + eVB)*™ (14 5)°" 1),
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where |-| and |-| denote the Euclidean and infinity norms respectively, € is such
that |(a £ b) — (a £b)| < €la £ b, |(ab)’ — (ab)| < €|ab| for all machine floats a, b,
B> [(wk) — ()], 0 <k < N, w=e*, and (-) refers to the computed (stored)
value of - for each expression.

Proof. We begin by giving error bounds for complex addition and multiplication.
For addition we can trivially see that |(zo%21)’'—(20%21)| < €:|20£21]. For complex
multiplication, we note that we can restrict ourselves to considering z; = a; + b;i
with 0 < ag, bg,a1,b1 and aga; > bpb;. Now considering the error in computing
apay — bpb1, we observe that if 2bpb; > agay there is no error introduced by the
subtraction [6]; further, if 2b9b; < agay then the total error introduced in computing
boby and performing the subtraction is bounded by €(agpa1 — bob1).

Combining these results with the straightforward bounds on other errors gives
us that [(aga; — bob1)" — (apar — bob1)| < emax(aga; + bob1,2apar — boby) and
|(apby + boa1)’ — (aob1 + boa1)| < €(2agby + 2bpay). From this we can readily obtain
the bound |(2021)" — (2021)| < €V/5 - |2021]-

Now we observe that the FFT and inverse FFT each consist of n steps, each of
which pairs off points and replaces each pair (zg,z1) with (29 + wz1, 20 — wzy) for
various Nth roots of unity w.

Given the above, we see that

|(w21)' = (w21)] < V5 - 'z + |w' —w] - |21]
<zl - (1 +eVB)(1+6) - 1)

and thus

(20 + w21)' —(20 + w21)|* + (20 — wz1) — (20 — wz1)|?

< (|20 +wz1]? + |20 — w21 ) (1 + €) (1 + eV/5)(1 + §) — 1)*.
Since (4;) = FFT((a;)) and (B;) = FFT((b;)), we now have
A" = Al < JA[- (L + " (L +eV5) (1 +5)" — 1)

and the corresponding relation for B.
Since C is the componentwise product of A and B, we can apply the Cauchy-
Schwarz inequality to obtain

D 1C =Gl <Al [Bl - (1 +€)* (14 eV5)™ (1 + 5)* — 1)

and, observing that in the worst case these errors accumulate additively, while
the errors introduced during the inverse FFT are of the same order as the errors
introduced during the (forward) FFT, we see that

2" = zloo < 2| [yl - (1 +€)*" (1 4+ eV/5)°" 1 (1 4 B)*" — 1),
as required. [l

Note again that this is a worst-case bound, and in general the error will be lower.
As a rough estimate of how much lower, we note that for random inputs the errors
|C! —C;| will be of roughly the same size; while in the worst case these are all added
together, in an average case they will cancel as in a random walk of length N to
give an average error a factor of v/ N lower.

We observe that on any IEEE 754 /854 compliant processor, using normal double
precision arithmetic (53 bit mantissa) we have e = 27°3, and if the Nth roots of
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unity are “perfect”, that is, rounded from the correct (infinite precision) values, we
can take 8 = e/\/i, since the errors in sin and cos are each bounded by € - 271

This gives us the useful benchmark that a straightforward multiplication of two
degree 524288 polynomials with “digits” between —5000 and 5000, given perfect
trigonometric data, will always produce the correct answer using double precision
arithmetic. This polynomial multiplication is equivalent to multiplying two 2 mil-
lion (base ten) digit numbers.

We further observe that, for worst-case inputs, the largest element in z = x x y
can be as large as |z| - |y|, so any implementation will have a worst case error of
at least Q(|z| - |y| - €). In this light our proven bound of O(|z| - |y| - € - n) is very
reasonable.

6. DWT ERROR BOUNDS

Theorem 6.1. The discrete weighted transform allows computation of the weighted
convolution z= x**y of two vectors with mazximum error

|2 — 2lo < |aa] - [ay] - (1 +€)*" (1 +eV5)*" (1 + 5)* (1 +6)* — 1),

where € and 3 are as defined earlier, § > max(|a} —ag|/|ax|), 6 > max((a; ') —a; ")
and |ag| > 1 for all k.

Proof. We observe that x ** y = a~!((ax) * (ay)). Now we see that
|(ax); — (ax)s| < [(az)| - (1 +eV5)(1 +4) — 1)

and similarly for z, and the cyclic convolution is computed via the FFT with the
errors as given earlier.
The result follows. O

We observe that in effecting the right-angle convolution of two signals we have
0 = ¢ and |(az)| = |x]|, so the maximum error is

2] - [y] - (1 + €)3™(1 + eV/B)3r 4 (1 + B)3n+3 _ 1),

consequently with double precision multiplication, accurate trigonometric data and
a balanced representation the right-angle convolution can safely multiply 2 million
digit integers in base 10%, 96 million digit integers in base 102, and 8 billion digit
integers in base 102. It is interesting to note that in the case of multiplying 2
million digit integers in base 104, the maximum error is lower when using a right-
angle convolution than when using a straightforward multiplication, as the extra
error incurred due to the DWT is dwarfed by the errors which would have been
encountered in the extra pass of FFT which is eliminated by the length-halving
inherent in the right-angle convolution.

We can also compute explicit limits for safe multiplication modulo Mersenne
numbers using the DWT. For working modulo 2" —1 with an FFT length of N = 2™
complex values it is easy to show that |ax| < 1/27+m/N=13/log4. This means that,
given perfect weights and trigonometric data, FFTs of length 2'® complex values
will be safe for m under 7 million; FFTs of length 22° will be safe for m under 26
million. For comparison, the Great Internet Mersenne Prime Search [10] uses limits
of about 10 million and 40 million for these same lengths. While this demonstrates
that the bounds are conservative, it also provides a concrete example of a problem
where using entirely “safe” multiplications would only increase the run time by
about 50%.
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For the general case of multiplication modulo a &+ b the bound is slightly more
difficult, but in the worst case we still have |ax| < /(ab)L/N - (P2 —1)/2log P2,
where P = Hp‘abp. In the case of numbers of the form 2™ + 1 the bound tightens
slightly to |ax| < \/(k2m)1/N - 3(k2 — 1)/(21og k2 log 4); this gives us that for k = 3,
an FFT of length 2'® will suffice for m up to 6 million, and for k = 557, the same
FFT suffices for m up to 3 million.

7. EXPERIMENTAL RESULTS

Error bounds are by their very nature pessimistic, and it is well worth inves-
tigating precisely how pessimistic our bounds are. This is especially true in light
of the heuristic error estimates given in [3] which, while giving an expected error
far below our proved bound (by a factor of roughly v/N), appear to agree with
numerical experiment.

We note however that these numerical experiments used essentially random in-
puts; they say nothing about the errors which might result if inputs were deliber-
ately chosen to result in large errors.

One such input is z; = Acos(2mj/N) + iAsin(2rxj/N). This input results in
large errors as a result of the distribution of the floating-point values after the
FFT; whereas for random inputs the post-transform values are of roughly equal
size, this input results in a single value being much larger than the rest, magnifying
the error.

In Figure [[] we compare experimental errors for 100 multiplications of random
polynomials with coefficients in [—5000, 4999] + [—5000, 4999]i, experimental errors
for squaring a polynomial with the above “unlucky” coefficients (with A = 5000),
and our proved error bound for FFT lengths of 2% up to 2'8. The range of coefficients
was chosen to match what would be used in a long integer arithmetic package which
used a base 10* representation, but naturally the results would be equivalent for
other bases.

Several points here are worth noticing. First, the range of maximum errors for
multiplications of random inputs is quite small; consequently the maximum error

Log( maxi mum error)

16 64 256 1024 4096 16384 65536 262144
FFT length

FIGURE 1. Maximum errors for various FFT sizes. The dotted
line represents the proved error bound; the boxes represent the
error resulting from ‘unlucky’ inputs; the vertical lines represent
the range of maximum errors for various random inputs.
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is quite predictable, and might even be of use in verifying that no errors occurred
during the multiplication.

Second, the errors for the atypical inputs are much larger than the random errors,
and parallel the error bound. While there is a significant gap between these errors
and the error bound, it remains almost constant as the FFT size ranges from 24 up
to 28, Meanwhile, the gap between these and the errors for random inputs ranges
from 1.6 bits up to 8.7 bits as the FFT length increases.

This clearly demonstrates that, while for some purposes choosing parameters
based on the errors resulting from random inputs will suffice, any attempt to ensure
that a multiplication will work for all inputs must pay attention to these atypical
inputs.

8. CONCLUSIONS

On most problems, using FFT multiplications with a level of precision which
is provably immune to fatal rounding errors will increase the run time by under
a factor of two. Because of this, and because of the existence of “unlucky” input
values which result in errors far exceeding the norm, we strongly recommend that
general purpose floating-point FFT multiplications be implemented in a manner
immune to fatal rounding errors, by using FFT lengths based on the error bounds
proved here.

Nevertheless there are a few cases where this is not advised; in large computa-
tions where machine error becomes a significant possibility, all computations must
be duplicated to ensure correctness. If care is taken in this duplication to ensure
that the multiplications are different (for example, in computing Lucas-Lehmer
tests, the Great Internet Mersenne Prime Search performs double-checks by multi-
plying all values by a random power of two [I0]), then there is no need to utilize
multiplications which always produce the correct result. Another case where a
“safe” multiplication might be unnecessary would be in a probabilistic primality
test; the unlikely possibility of a factor being missed would be far outweighed by
the increased speed of using an unsafe multiplication.

However, these examples are few, and only the end-user of an arithmetic package
could know how the multiplications are to be used; consequently any floating-point
FFT multiplications in computer algebra packages or general long integer arithmetic
packages should use provably correct multiplications.
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