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COMPUTATIONAL INVESTIGATIONS
OF THE PROUHET-TARRY-ESCOTT PROBLEM

PETER BORWEIN, PETR LISONĚK, AND COLIN PERCIVAL

Abstract. We describe a method for searching for ideal symmetric solutions
to the Prouhet-Tarry-Escott Problem. We report results of extensive searches
for solutions of sizes up to 12. We found two solutions of size 10 that are
smaller by two orders of magnitude than the solution found by A. Letac in the
1940s, which was the smallest size 10 solution known before our search.

1. The Prouhet-Tarry-Escott Problem

The Prouhet-Tarry-Escott Problem (PTE Problem) is an old unsolved problem
in Diophantine number theory. In its most general setting the PTE Problem asks
for two distinct multisets of integers X = {x1, . . . , xn} and Y = {y1, . . . , yn} such
that

(1)
n∑
i=1

xei =
n∑
i=1

yei for e = 1, 2, . . . , k

for some integer k ≤ n− 1. Any pair X,Y that satisfies (1) is called a solution of
the PTE Problem; this is denoted by X =k Y . If k = n − 1, then the solution is
called ideal and n is called the size of this ideal solution. In this paper we restrict
our attention to ideal solutions.

If X,Y are multisets satisfying the system (1) and f(t) = αt + β is a linear
transformation with rational coefficients, then the multisets f(X), f(Y ) satisfy (1);
we say that X,Y and f(X), f(Y ) are equivalent solutions. In what follows we
consider only integer solutions up to equivalence.

The PTE Problem has a long history and is, in some form, over 200 years old.
In this article we do not intend to survey the known results. Extensive accounts
of the history and known results (with the exception of the new solutions of sizes
10 and 12 listed in Section 2.6 below) are available in [1, 2, 5]. Many numerical
solutions (both ideal and nonideal) can be found at Chen Shuwen’s website [4].
Ideal solutions to the PTE Problem are known only for sizes n = 1, 2, . . . , 10 and
n = 12. Parametric ideal solutions are known for n = 1, 2, . . . , 8 and n = 10; in
each case they give rise to infinitely many nonequivalent ideal solutions.
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1.1. Ideal symmetric solutions. The PTE Problem is often considered in its
much more restrictive symmetric version, which cuts the number of variables by
one half. For n odd, the symmetric version takes the form

(2)
n∑
i=1

xei = 0 for e = 1, 3, . . . , n− 2.

If x1, . . . , xn satisfy (2), then

{x1, . . . , xn} =n−1 {−x1, . . . ,−xn}

is an odd ideal symmetric solution of the PTE Problem. For n even, the symmetric
version of the PTE Problem takes the form

(3)
n/2∑
i=1

xei =
n/2∑
i=1

yei for e = 2, 4, . . . , n− 2.

If x1, . . . , xn/2 and y1, . . . , yn/2 satisfy (3), then

{x1, . . . , xn/2,−x1, . . . ,−xn/2} =n−1 {y1, . . . , yn/2,−y1, . . . ,−yn/2}

is an even ideal symmetric solution of the PTE Problem.

1.2. An example from history. Nearly all known solutions were found without
using computers, with the exception of the single known size 12 solution found by
Chen and others in 1999 and the two small size 10 solutions whose discovery we
describe in this article. It is interesting to use modern symbolic computation tools
to study the parametric solutions originally obtained by tedious hand computations,
mostly in the 1940s. Sometimes that results in an improvement of those solutions.

For example, Gloden [5] on pages 42–43 describes the derivation of a parametric
ideal symmetric solution of size 7. Because of the apparent difficulty of compu-
tations that had to be carried out by hand, the final solution, which uses four
parameters f, g, k, l, is not even found explicitly; only a numerical example is given
at the bottom of page 43. With a computer algebra system such as Maple or Math-
ematica one can quickly discover that the seven polynomials implicitly given by
Gloden have a large common divisor; after dividing it out the parametric solution
turns out to depend only on f and k and becomes quite manageable. We list it
below: The values α1, . . . , α7 satisfy

∑7
i=1 α

e
i = 0 for e = 1, 3, 5.

α1 = −
(
f2 − kf + k2

) (
−3 kf2 + k3 + f3

)
,

α2 = − (k − f) (f + k)
(
f2 − 3 kf + k2

)
f,

α3 = (−f + 2 k)
(
−f2 − kf + k2

)
kf,

α4 = (k − f) (k − 2 f)
(
−f2 + kf + k2

)
k,

α5 = (k − f)
(
f4 − 2 kf3 − k2f2 + k4

)
,

α6 = −
(
k4 − 2 fk3 − k2f2 + 4 kf3 − f4

)
k,

α7 = −
(
k4 − 5 k2f2 + 4 kf3 − f4

)
f.

For example, plugging in f = 3, k = 1 yields the following ideal symmetric solution
of size 7:

{−7, 24, 33,−50,−38,−13, 51}=6 {7,−24,−33, 50, 38, 13,−51}.
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2. Search for ideal symmetric solutions

Our primary interest was a search for ideal symmetric PTE solutions of sizes
9 ≤ n ≤ 12. For n ≤ 8 and n = 12, the coordinates of the smallest ideal symmetric
solution of size n grow (in absolute value) roughly as n2. However, the smallest
ideal symmetric solution of size 10 that was known before our computations grossly
exceeds this trend, and we were curious whether smaller solutions existed. We
indeed found two solutions of size 10 that are substantially smaller—by two orders
of magnitude—than the solution found by Letac in the 1940s.

2.1. The constant associated with an ideal solution.

Lemma 1 ([2]). The following are equivalent:
n∑
i=1

xei =
n∑
i=1

yei for e = 1, . . . , k,

deg
( n∏
i=1

(x− xi)−
n∏
i=1

(x− yi)
)
≤ n− k − 1,

(z − 1)k+1
∣∣ n∑
i=1

zxi −
n∑
i=1

zyi.

Proof. This is an easy exercise in differentiation and manipulation with symmetric
polynomials. �

Corollary 2. The pair of multisets {x1, . . . , xn} , {y1, . . . , yn} is an ideal PTE
solution if and only if

(4)
n∏
i=1

(x− xi)−
n∏
i=1

(x− yi) = C

for some real constant C.

From now on we will associate with any ideal PTE solution the corresponding
constant C (or, equivalently, −C) and we will speak about the constant C without
any further explanation. It is generally a highly composite number, since

C =
n∏
`=1

(xi − y`) = −
n∏
`=1

(x` − yj) for all i, j = 1, . . . , n.

2.2. Divisibility results.

Proposition 3. Let {x1, . . . , xn} =n−1 {y1, . . . , yn} be two multisets of integers
that constitute an ideal PTE solution, and suppose that a prime p divides the con-
stant C associated with this solution. Then we can reorder the integers yi so that

xi ≡ yi (mod p) for i = 1, . . . , n.

Proof. Assume that p is a prime dividing C. Let Fp denote the field with p elements.
From (4) we get

∏n
i=1(x − xi) =

∏n
i=1(x − yi) in Fp[x] (the ring of univariate

polynomials over Fp) and, since Fp[x] is a unique factorization domain, it follows
that the multisets {x1, . . . , xn} and {y1, . . . , yn} are equal as subsets of Fp. �
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Table 1. Divisibility of constants associated with ideal symmetric solutions.

n some primes dividing the constant C
9 2, . . . , 13

10 2, . . . , 7, 13, 17, 23
11 2, . . . , 19, 31
12 2, . . . , 11, 17, 19, 29
13 2, . . . , 41

The relevance of Proposition 3 to a computer search for PTE solutions is obvious:
It cuts the size of the search space by the factor of 1/p in each coordinate because of
the pairing property modulo p. It is therefore desirable to find as large as possible
primes p such that p must divide C for any ideal (or ideal symmetric) PTE solution.

Some general results about the divisibility of C for ideal (not necessarily ideal
symmetric) PTE solutions were obtained by Rees and Smyth [6]. Recall that our
goal is to search for ideal symmetric solutions (over integers). By an exhaustive
search for solutions in the ideal symmetric form over some small finite fields we
discovered—not surprisingly—that stronger divisibility properties hold in this case.
Table 1 summarizes the results that can be obtained this way (i.e., by solving over
finite fields) for ideal symmetric solutions for problems of sizes 9 ≤ n ≤ 13. More
results can probably be proved using other methods.

2.3. Odd sizes. Let n = 2m+1 denote the size of an odd ideal symmetric solution.
Equation (4) takes the form

2m+1∏
i=1

(x+ xi) =
2m+1∏
i=1

(x − xi) + C .

We observe that
2m+1∏
i=1

(xi + xj) = C, j = 1, . . . , 2m+ 1,

and thus

1
C
·

2m+1∏
i=m+2

(xi + xj) =
m+1∏
i=1

(xi + xj)−1, j = 1, . . . ,m+ 1.

If x1, . . . , xm+1 are distinct, then there is a unique polynomial f(x) of degree m
satisfying

f(xj) =
m+1∏
i=1

(xi + xj)−1, j = 1, . . . ,m+ 1 .

(The cases when xi = −xj for some 1 ≤ i < j ≤ m+1 lead to trivial PTE solutions,
and thus we do not worry about them.) Given x1, . . . , xm+1, we can compute the
corresponding f(x) quite easily. Now we simply note that

f(−xj) =
1
C
·

2m+1∏
i=m+2

(xi − xj) = 0, j = m+ 2, . . . , 2m+ 1,

and that we can thereby compute the unique multiset {xm+2, . . . , x2m+1} by solving
the equation f(−x) = 0.
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We solve this equation numerically, using Newton’s method. Since it suffices to
perform a test which eliminates the vast majority of candidates and perform a more
rigorous test later, we use Newton’s method to test if the root with largest real part
is within 10−6 of an integer within the search limit. To do this we start Newton’s
iteration with a value above the search limit and continue until either the iteration
converges, the iteration fails to monotonically decrease, or the 60th iteration is
reached. If the iteration converges, the solution is checked to see if it is close to an
integer, and the possible solution is reported. If the iteration is not monotonically
decreasing, then there are complex roots, and we can discard the candidate. If the
60th iteration is reached without convergence, then it is impossible for the roots to
be distinct integers within the search range, and we again discard the candidate.

In order to speed up the convergence, we start by using a modified Newton
iteration which takes double the “step” at each iteration. Based on the assumptions
that the roots are all real and less than the current value of the iterand, this can
only “jump over” at most one root, an event which will be observed through the
sign of f(x) changing. Once this is observed, we return to the previous value of
the iterand—one which is still greater than all the roots—and continue the classical
Newton iteration from that point. As a fortuitous side effect, this provides quadratic
convergence to double roots, ensuring that the iteration should always finish within
the maximum 60 iterations. (It is impossible for a solution to the Prouhet-Tarry-
Escott Problem to contain triple roots. [1])

This reduces the search space from 2m+ 1 dimensions to m+ 1 dimensions; to
test whether a solution of size 2m+ 1 exists with a given subset of size m+ 1, we
need merely compute what the remaining m xj ’s would be and check if they are
integers.

We can further speed up the search by making use of necessary prime factors of
the constant C. From Section 2.2 we know that the constant C for a solution of size
2m+ 1 must satisfy certain divisibility conditions. We also know from Proposition
3 that the multisets {x1, . . . , xn} and {−x1, . . . ,−xn} are equal modulo any prime
p that divides C. That is, modulo p there is one (or more) xi ≡ 0, and the rest
pair off, xi ≡ −xj (mod p).

Consequently, we can restrict our search to (m+ 1)-tuples (x1, . . . , xm+1) satis-
fying

x1 ≡ 0 (mod p1),
(x1 + x2) · x1 ≡ 0 (mod p2),

(x2 + x3) · (x1 + x2) ≡ 0 (mod p1),
(x3 + x4) · (x1 + x2 + x3) ≡ 0 (mod p2),

...

(xm + xm+1) ·
m∑
i=1

xi ≡ 0 (mod p(m+1) mod 2),

with p1 and p2 being the two largest primes dividing C and the values j mod 2
taken as 1 or 2. That is, for each j = 1, . . . ,m, the value xj+1 is paired off with
xj modulo p(j+1) mod 2 unless all the x1, . . . , xj are already paired off modulo this
prime.
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2.4. Even sizes. Let n = 2m be the size of an even ideal symmetric solution.
Equation (4) in this case takes the form

m∏
i=1

(x2 − x2
i ) =

m∏
i=1

(x2 − y2
i ) + C,

and we can observe that
m∏
i=1

(y2
j − x2

i ) = C, j = 1, . . . ,m,

and thus

1
C
·

m∏
i=m−k+2

(y2
j − x2

i ) =
m−k+1∏
i=1

(y2
j − x2

i )
−1, j = 1, . . . , k,

for any convenient k. We can now proceed as in the case of odd sizes, except that
instead of needing x1 through xm+1, we need x1 through xm−k+1 and y1 through
yk.

Again as with odd sizes, we can speed up the search by making use of the
divisibility requirements for C. Since xi ≡ yi (mod p) for any prime p dividing the
constant C, we can restrict our search to values satisfying

x2
i ≡ y2

i (mod p1),

(x2
i+1 − y2

i ) ·
i∑

j=1

(x2
j − y2

j ) ≡ 0 (mod p2),

with p1 and p2 again being the two largest primes dividing C.

2.5. Implementation. The searches we conducted used a total of roughly 1017

floating-point operations. We were able to gain access to unused computing capacity
on over 100 Celeron 500 based computers over the course of several months. Given
that these computers were vastly overpowered for their primary use, for all practical
purposes this meant that we had access to 50 gigaflops of computing power available
24 hours per day.

Searching for solutions to the PTE Problem has the useful property of being
“naturally parallel.” There is absolutely no need for interprocessor communication:
All that is necessary is for processors to be assigned a portion of the search range,
and to report back any solutions found.

The actual implementation of the search was surprisingly simple. Windows NT
has built-in support for “services” (programs are run even if no user is logged into
the machine), including remote management tools. This made it possible for a
single service program to be written, placed on the network, and to be installed
simultaneously onto all 100+ computers.

To solve the problem of computers being turned off in mid-calculation, we took
a simple approach: Only keep track of which search blocks have been finished.
Rather than attempting to resume a search part way though, every time a computer
finished a block it would report this completion back to the server, and when the
server logs were later inspected, any unfinished blocks were re-issued until they
were successfully completed.
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Table 2. Results of search for ideal symmetric PTE solutions.

size search limit result
9 2000 no new solutions found

10 1500 two new solutions found
11 2000 no solutions found
12 1000 no new solutions found

2.6. Results. The results of our searches for ideal symmetric solutions, whose co-
ordinates are all bounded by a value that we call the “search limit,” are summarized
in Table 2.

For size 9, we verified that there are no previously unknown ideal symmetric
solutions with coordinates less than 2000. The only primitive solutions found were

{−169,−161,−119,−63, 8, 50, 132, 148, 174}
and

{−98,−82,−58,−34, 13, 16, 69, 75, 99} .
(By a “primitive solution” we mean a solution whose terms do not have a nontrivial
common factor. Note that no two primitive integer solutions are equivalent in the
sense defined in Section 1.)

For size 10, two previously unknown solutions were found. Before this paper, the
only known solutions of size 10 were large solutions derived from rational points on
an elliptic curve [2], with the smallest (found by A. Letac in the 1940s) being

{±436,±11857,±20449,±20667,±23750}
=9 {±12,±11881,±20231,±20885,±23738}.

We found the two solutions

{±71,±131,±308,±180,±307}=9 {±99,±100,±301,±188,±313}
and

{±18,±245,±331,±471,±508}=9 {±103,±189,±366,±452,±515}.
These (and multiples of them) are the only even ideal symmetric solutions of size
10 whose coordinates are less than 1500.

For size 11, we searched up to 2000 and did not find any solutions. At present
no solutions of size 11 are known.

For size 12 only the solution

{±22,±61,±86,±127,±140,±151}=11 {±35,±47,±94,±121,±146,±148},
first discovered by Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen in
1999 [4], was found.

3. An open problem

We have also computed many ideal symmetric solutions for sizes up to 8. Inter-
estingly, more than 85% of all nonequivalent ideal symmetric solutions {x1, . . . , x7}
of size 7 that we computed (some of them with coordinates exceeding 6000) are
subject to a relation of the form

x1 + x2 + x3 = x4 + x5 + x6 + x7 = 0.
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A similar observation holds for the two known ideal symmetric solutions of size 9
(see the previous section), which are both subject to a relation of the form x1 +
x2 + x3 + x4 = x5 + x6 + x7 + x8 + x9 = 0; the larger of the two solutions of
size 9 is in fact subject to as many as four independent relations of this form.
It would be interesting to understand the nature of this phenomenon, which is
sometimes consciously used to construct ideal symmetric solutions (such as for
example Gloden’s parametric solution of size 7 introduced in Section 1.2). A similar
approach is taken by Bremner [3], who finds rational solutions of x5 + y5 + z5 =
u5 + v5 + w5 by introducing two auxiliary linear equations x + y + z = u + v + w
and x− y = u− v.

One possible cause for this phenomenon is the divisibility properties; given that
such relations must exist modulo any prime dividing the constant C associated with
the solution, it is not altogether surprising that such relations so often occur over
the integers. Any statistical treatment of this is however made impossible by a lack
of understanding of the “statistical distribution” of solutions.

4. Acknowledgments

We are indebted to Academic Computing Services of Simon Fraser University,
in particular to Paul Geenen and Bunny Penn Tan, for allowing us to access the
unused capacity of personal computer labs and for installing our software on the
lab networks.

References

1. P. Borwein, Excursions in Computational and Diophantine Number Theory. Springer-Verlag,
New York (to appear).

2. P. Borwein, C. Ingalls, The Prouhet-Tarry-Escott Problem revisited. Enseign. Math. 40 (1994),
3–27. MR 95d:11038

3. A. Bremner, A geometric approach to equal sums of fifth powers. J. Number Theory 13 (1981),
no. 3, 337–354. MR 83g:14017

4. Chen Shuwen, The Prouhet-Tarry-Escott Problem. http://member.netease.com/~chin/eslp/-
TarryPrb.htm

5. A. Gloden, Mehrgradige Gleichungen. Second Edition. P. Noordhoff, Groningen, 1944. MR
8:441f

6. E. Rees, C. Smyth, On the constant in the Tarry-Escott Problem. Cinquante ans de polynômes
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