
Profiling the FreeBSD kernel boot

Colin Percival

Tarsnap Backup Inc.

Email: cperciva@tarsnap.com

Abstract—We describe work we have done to profile the
FreeBSD kernel boot — both adding instrumentation to the
kernel to collect data while the system is booting, and converting
the resulting timestamp records into a graphical visualization of
where time is spent in the boot process. We show results from
two systems and highlight some places where it is clear that the
performance of the FreeBSD boot process can be improved.

I. INTRODUCTION

In mid-2017, the author bought a new laptop to run

FreeBSD. Over the following months spent attempting to get

the integrated Intel video chipset to work properly in FreeBSD,

and a large number of ensuing reboots as new kernels were

attempted, a question emerged: Why did rebooting FreeBSD

take so long, anyway?

While a large amount of effort has been spent on optimizing

the performance of FreeBSD while it is running, the time

spent booting the system had never received much attention,

despite being a frequent irritant to users. Indeed, as soon as

we started investigating this, it became clear that there was a

large amount of “low-hanging fruit” of time spent during the

boot process which could be easily improved. Nevertheless,

in the interest of completeness (which proved very important,

since there turned out to be major improvements available

which we had not noticed prior to commencing this work)

and ensuring that future opportunities for performance gains

could be easily discovered by other developers, we decided

to pursue a systematic approach to collecting and visualizing

information on how time was spent during the FreeBSD kernel

boot.

The time spent booting FreeBSD can be divided into four

parts:

1) System firmware (BIOS, UEFI, etc.) initializes the sys-

tem and loads the boot loader from disk.

2) The boot loader loads the FreeBSD kernel1.

3) The FreeBSD kernel starts additional CPUs, discovers

attached devices, initializes hardware, mounts filesys-

tems, and spawns the init process.

4) The init process launches /etc/rc and a set of

userland startup scripts run.

Of these, we are concerned in this paper only with the third:

The time between when we start running code in the kernel

and when the init process is launched.

1Sometimes this step involves multiple boot loaders with increasing degrees
of sophistication; in any event, one of them eventually loads the FreeBSD
kernel.

II. PRIOR WORK

Most FreeBSD developers, when the need for profiling

arises, immediately reach for DTrace [1]. This is an incredibly

powerful tool for performance analysis, but with its power

comes some limitations: DTrace makes use of traps, memory

allocation, and even the kernel scheduler — none of which are

available when we first start running code in the kernel. While

DTrace can be a very effective tool for profiling the portion

of the kernel boot which occurs after DTrace is running2, we

wanted to profile as much of the kernel boot as possible, so

DTrace was insufficient for our purposes.

Users of the Linux systems will be familiar with the basic

boot profiling functionality built into the Linux kernel: Lines

emitted by the kernel to the system log are prefixed with

a timestamp. This has the great advantage that it can be

immediately obvious to end users if one step in the boot

process is taking an inordinate amount of time, but it has

some significant disadvantages as well. First, timestamping

kernel log output means that only those points in the boot

when output is printed will have timestamps recorded; the

boot time initcall_debug option adds extra logging of

the initcall functions called to initialize many parts of

the Linux kernel, but these still provide only a coarse level of

granularity. Second, the timestamps which are printed become

meaningful only after the necessary initialization has been

performed to be able to convert system cycle counts into

wallclock times; at the start of the boot, every line is marked

as having timestamp 0.000000. Finally, while additional

timestamping points — after the clock initialization has been

performed — can be easily added, the act of printing additional

lines to the console (with or without timestamps) can affect

the time spent, making this cumbersome as a mechanism for

further investigation of boot performance.

Once data has been collected, there are a number of tools

available for visualization; most notably, Flame Graphs [2] are

commonly used for viewing data collected by DTrace, while

bootgraph [3] is commonly used to visualize the time used in

the Linux kernel by initcall functions3.

III. TIMESTAMP LOGGING

To avoid the limitations of DTrace and Linux’s ker-

nel log timestamping, we adopt a hybrid approach. Like

2In particular, DTrace has support for “boot-time tracing” whereby a set
of directives is prepared and the boot loader is instructed to load them along
with the kernel the next time the system boots.

3A more sophisticated tool, systemd-bootchart [4], is also available from
the same author for visualizing the userland boot process.



DTrace, we record system cycle counts, as returned by the

get_cyclecount function4 into a buffer which is not

displayed in any way but rather retained to be dumped by

userland after the boot completes; but like Linux, we fix at

compile time the points at which timestamps are recorded

rather than using hot-patching to insert probes at run time.

The infrastructure used for recording timestamps lies in two

files, sys/tslog.h and kern/kern_tslog.c. The C

file exposes two interfaces: A function tslog which records

a timestamped event, and a FreeBSD sysctl [5] which allows

the buffer of recorded events to be read by a userland process.

Since tslog must be able to run before kernel locking

primitives are available, it uses a very simple synchronization

mechanism: When a record is to be logged, a “slot” is reserved

in a buffer (which is defined at compile time with a fixed

size) by atomically incrementing a record-number variable;

the record is then filled in with the necessary data.

When the buffer is read out via the sysctl interface, the same

record-number value is used to indicate when to stop copying

out the buffer; this exposes a theoretical race condition, since

the sysctl could read a record which has not been fully written,

but since we will be reading the buffer only after the boot

process completes and will ignore any records from after that

point, this race condition is of no practical relevance.

The tslog.h header file serves two purposes: First, to

expose a more useful interface to the tslog function — most

notably, so that the lines TSENTER(); and TSEXIT();

are sufficient to annotate the start and end of a function —

and second to allow timestamping to be easily turned on

and off at compile time. When compiled with the default

options, the macros used for timestamping the FreeBSD kernel

are replaced with nothing; only when the kernel is compiled

with the (non-default) TSLOG option do the macros result in

tslog being invoked to record timestamps.

Each timestamp record consists of five fields: The current

thread ID; the type of record; pointers to one or two strings;

and the system cycle count.

IV. FUNCTION TRACING

Most of the instrumentation we have added to the kernel is

to record the start and end of functions. Unlike DTrace, which

understands enough about machine architectures to inspect the

call stack and translate program counters to function names,

we directly record when we enter and exit functions of interest.

The first set of functions we annotated this way are major

steps which comprise the FreeBSD boot; while little time

is spent in these functions directly, recording them provides

a useful reference when considering finer grained steps in

the boot process. These are the amd64 machine-dependent

4On x86 CPUs, this is provided by the RDTSC instruction.

initialization function hammer_time5; the main machine-

independent initialization function mi_startup, which runs

as “process #0” and once completed becomes the “swapper”

process; and the start_init function, which — as the

name suggests — is responsible for launching the init

process which takes over the boot procedure, continuing into

userland. We also annotated two additional functions which

are called from within start_init: The vfs_mountroot

function, which is responsible for mounting the root filesys-

tem, and the vfs_mountroot_wait function, which is

responsible for waiting until the system is ready for the root

filesystem to be mounted.

At the other extreme, we annotated the various machine-

dependent DELAY functions, which are used to wait for a

specified number of microseconds (typically to allow hardware

to become ready during initialization routines when it is not

yet possible for a thread to yield the CPU to the scheduler and

resume later), and the _vprintf function, which is used by

the kernel printf and log routines to print output to the

console. These functions are used from many places in the

kernel and turn out to be collectively responsible for as much

as 80% of the time spent booting.

Between these two extremes, there are three important sets

of functions which we were able to instrument automatically

by adding code to the frameworks which call them.

A. SYSINITs

FreeBSD SYSINIT functions are like Linux initcall

functions: They are created by placing symbols into a special

ELF section, and mi_startup iterates over those symbols

calling the appropriate functions in turn6. Since SYSINITs are

defined by a C macro, we simply redefine the macro to instead

call a “wrapper” function which logs the function entry/exit

and calls the original target function.

In our first attempt, this caused a problem with FreeBSD’s

linux KPI compatibility shim: SYSINIT declarations were

placed within functions, at which point C does not permit

a new function to be defined7. To remedy this problem, we

switched instead to defining a single wrapper function in the

C header file rather than instantiating a new wrapper function

every time the macro was used.

5Other architectures will need their machine-dependent initialization func-
tions annotated as well, but we did not have access to all the platforms
upon which FreeBSD runs in order to test said changes. Since the usual
mechanism for determining which thread is running is unavailable when
the machine-dependent initialization code starts running, annotating these
functions is slightly more complex (and thus error-prone) than simply adding
TSENTER(); and TSEXIT();.

6There are subtle differences — FreeBSD’s SYSINIT mechanism allows
for a far more fine-grained ordering to be specified, for example — but for our
purposes the two systems are the same: Lists of functions which are called
during kernel startup.

7Even before our changes this produced (upon macro expansion) somewhat
questionable C code — identifiers were being created with block scope and
no linkage, and then declared as being placed into a specific ELF section —
but FreeBSD’s build toolchain was able to cope with this odd behaviour.



B. Devices

After some basic kernel infrastructure has been initialized,

the FreeBSD kernel proceeds8 to examine the system buses

to discover all of the hardware devices available. Drivers in

turn are invited to probe for hardware which they are able

to manage via their respective DEVICE_PROBE methods; for

each device found, FreeBSD then selects a single driver (based

on the strengths of matching returned by the probe functions)

and calls its DEVICE_ATTACH method.

In order to instrument these function calls, we add prologue

and epilogue code to the inline functions which look up and

invoke these two methods. (There are many other methods

which could be instrumented the same way, but it seemed

unlikely that suspend, resume, shutdown, or detach methods

would be of any relevance during the boot process.)

C. Filesystems

The final set of functions we found to be of note during the

boot process are those used for mounting filesystems. To that

end, we modified the VFS_MOUNT macro (which invokes the

appropriate vfs_mount function for the filesystem type in

question) to make function entry/exit timestamping calls.

V. BOOT HOLDS

Recording when we enter and exit certain functions allows

us to build timelines of stacks9 for each kernel thread; but

this alone does not allow us to ascribe blame in the case

where one thread is blocked waiting for another thread to finish

performing an operation. It might be possible to handle this by

gathering information from the kernel scheduler about when

threads are scheduled, sleeping, and waking up10, but since we

were interested only in the FreeBSD kernel boot and do not

expect to see any significant lock contention, we opted instead

to instrument the specific locations in the boot process where

the boot is blocked waiting for another thread to complete:

1) The intr_config_hooks SYSINIT waits

until any hooks which were registered via the

config_intrhook_establish function have

been released; this is typically used by devices

which need interrupts enabled in order to complete

their initialization, and allows them to prevent the

continuation of the boot process until their initialization

is complete.

2) The g_waitidle function waits for the GEOM event

queue to be empty; this ensures that all of the attached

disks have been “tasted”11 before the kernel proceeds to

attempt to mount the root filesystem.

3) The vfs_mountroot_wait function (in addition to

calling g_waitidle) waits for holds registered via the

8The process of probing and attaching drivers to devices mainly occurs
within the “configure2” SYSINIT.

9At least, the elements from stacks which have been instrumented.
10FreeBSD’s schedgraph tool displays this and other information.
11GEOM tasting is the process by which stacked storage structures are

parsed, e.g., to determine that a raw disk is partitioned into several parts, is
one part of a mirror, or contains an encrypted disk.

root_mount_hold function; among other things, this

is used by the USB subsystem in order to ensure that

the USB device tree has been fully explored (and disks

discovered) before the system attempts to mount the root

filesystem.

We refer to these collectively as “boot holds”, and instru-

mented them by recording every time a boot hold is established

or released, and every time a thread waits (or finishes waiting)

for boot holds to be released.

We also instrument the creation of new threads, recording

the name given to the thread (e.g., g_event); these thread

names will be used later to identify the code being blamed for

holding up the boot process.

VI. VISUALIZATION

After the system has finished booting, we use the newly-

created debug.tslog sysctl to dump the buffer of times-

tamped events to userland. We split the data according to

thread IDs, and then for each thread we convert the series

of “function entry” and “function exit” records into a series

of timestamped stacks for each thread.

We then identify the two threads we know that we will be

interested in — the thread which runs the machine-dependent

initialization and mi_startup, and the thread which runs

start_init — by simply noting when those functions are

entered, and pull their stack histories together. These together

cover the kernel boot process and describe the time spent

booting; but they do not provide any insight into the time

spent during boot holds.

To fill in those gaps, we look at the periods when those

threads are waiting for boot holds to be released. In each case,

we then look at how other threads are acquiring and releasing

boot holds of that type; we “blame” the thread which was

the last to release its boot hold for the period of time ending

when its boot hold was released and starting at the latest of (a)

when the boot hold wait started; (b) when the boot hold was

acquired; and (c) when the thread which released the boot hold

was created. This is only a rough heuristic — it’s possible for a

boot hold to be established and then for work to be done in sev-

eral different threads before the boot hold is finally released —

but in our experience it works well enough to give a clear in-

dication of where time is being spent. Having identified these,

we then splice together the stacks to create pseudo-stacks

showing e.g., that start_init called vfs_mountroot,

which called vfs_mountroot_wait, which is waiting for

THREAD g_event, which called pkcs5v2_genkey12.

At this point we have a series of timestamped (pseudo)stacks

and simply want to convert them into a more human-viewable

form. Unfortunately, since flame graphs sort stacks into lexi-

cographical order, they lose the information we have about the

order in which stacks are encountered; while that is of little

12We have not instrumented the pkcs5v2_genkey function in the public
FreeBSD source tree, but during development we instrumented it locally; this
is the function used by the GELI encrypted disk system to convert a passphrase
into a derived encryption key, and to ensure the security of the disk encryption
it is necessary to spend a nontrivial amount of time here.



Fig. 1. FreeBSD 11.0-RELEASE on EC2 c5.4xlarge instance

Fig. 2. FreeBSD 12.0-CURRENT on the author’s laptop

importance for monitoring the steady-state of running systems

(which is where flame graphs are most often used), we believe

that this information is likely to be of great importance to

understanding the FreeBSD boot process.

However, we do not want to simply display stacks exactly

as they are logged either; there are many stacks which recur —

device probe routines are called multiple times as the devices

attached to a particular bus are uncovered, and some drivers

make repeated DELAY calls separated by sending commands

to hardware and reading responses — so aggregating identical

stacks is still useful. To that end, we add up the number of

clock cycles spent in each unique stack, while keeping track of

the “average cycle count” during the times when the kernel is

running in each stack; we then perform a tree traversal of the

list of stacks, ordering subtrees based on the “average cycle

count” spent within each, in order to place stacks in roughly

the order in which they were originally encountered.

While this does not perfectly retain information — if a func-

tion repeatedly cycles between calling two other functions13,

that information is lost as we will display the block of time

spent in one child function as being entirely before or entirely

after the other — in practice we find that this serves as a good

compromise between retaining all the available information

and eliding enough to allow the most important information

to be easily “eyeballed”.

Finally, we pass the series of stacks (which now, rather than

having timestamps attached, merely have recorded the total

number of cycles spent within each stack) to a version of

13For example, vfs_mountroot_wait runs in a loop checking the
idleness of the GEOM event queue and checking that there are no holds
registered via root_mount_hold.

Brendan Gregg’s flamegraph code which has been modified

to operate in “flame chart” mode14 — displaying the stacks

in the order provided rather than re-sorting lexicographically.

In order to highlight potential “easy wins”, we also amend

the colour scheme used in flame charts, marking the DELAY

function in blue and the _vprintf function in green.

VII. RESULTS

We applied our work to visualize the FreeBSD boot pro-

cess on two systems: The author’s laptop (FreeBSD 12.0-

CURRENT, 4-thread Intel 2700 MHz CPU, 32 GB RAM, ZFS

running on a pair of encrypted disks) and a virtual machine

in the Amazon Elastic Compute Cloud service (FreeBSD

11.1-RELEASE, 16-thread Intel 3000 MHz CPU, 32 GB

RAM, UFS running on a single virtual disk); the flame charts

produced are shown above15 as Figures 1 and 2.

In Table 3 we compare the time spent on these two systems

in different parts of the boot process; all routines which took

over 100 ms on either system are shown.

VIII. SECURITY

While we expect this work to be very useful for profiling

and ultimately improving the performance of the FreeBSD

14This name originates from a tool used in the Chrome web browser for
performance visualization; as with our application, it displays stacks vertically
and maps time to the x axis.

15With the “live” SVG images generated by our code it is possible to zoom
into individual parts of the chart to see smaller portions with the appropriate
labels, but that functionality is lost when incorporating the images into PDF
or printed form.

16The hpt27xx and hptnr drivers in FreeBSD 11.1-RELEASE have a
bug which resulted in excessively long probe times; this bug was fixed in
12.0-CURRENT before we profiled the boot time on our laptop.



Initialization routine Laptop EC2 instance

hammer_time DELAY 647 642
SYSINIT vm_mem 104 469
SYSINIT cpu DELAY 1000 1000
SYSINIT cpu_mp DELAY 60 156
SYSINIT start_aps 3 794
DEVICE_ATTACH acpi 197 52
DEVICE_PROBE acpi_timer 19 123
DEVICE_ATTACH pci 214 55

DEVICE_PROBE hpt27xx16 216
DEVICE_PROBE hptnr 108
DEVICE_ATTACH nvme DELAY 250
DEVICE_ATTACH ena DELAY 700
DEVICE_ATTACH atkbd DELAY 433 430
DEVICE_PROBE psm 174 323
DEVICE_PROBE psm DELAY 1813 1182
SYSINIT clocks DELAY 1000 1000
THREAD thread taskq 288
THREAD g_event 2582
THREAD usbus0 9008
VFS_MOUNT zfs 190
VFS_MOUNT ufs 1
_vprintf 720 4021
Other code 371 218

Total 18823 11740

Fig. 3. Time (ms) spent in during the boot process. Lines marked foo

DELAY correspond to the time spent calling DELAY from within foo; with
that exception, times indicated do not include time spent in child functions.

system boot, care should be taken when using it. There are

two particular limitations of which users should be aware.

First, because the code which records timestamped events

takes pointers to strings (most commonly the names of the

functions which are being entered or exited) and does not copy

their contents until the records are dumped out to userland

via the debug.tslog sysctl, the code is almost certain to

fail spectacularly in the event that a kernel module is ever

unloaded — since the pointers to strings will turn into pointers

to garbage (or possibly pointers to non-existent pages).

Second, since the FreeBSD kernel random number gener-

ator relies upon the time spent in device attach methods as

an entropy source, recording timestamps upon entering and

exiting those methods and exporting those values to userland

risks compromising the cryptographic security of the kernel’s

entropy pool.

As a result of these problems, we recommend that this

functionality remain a non-default option, enabled only when

developers manually add TSLOG to their kernel configuration.

IX. AVAILABILITY

The FreeBSD kernel patches required for this work are

now in 12.0-CURRENT, having been added as SVN revisions

327423 through 327432. The userland code for visualizing

the boot process is available from https://github.com/cperciva/

freebsd-boot-profiling.

X. FUTURE WORK

Now that it is easy to visualize the time spent in the

FreeBSD kernel boot, we intend to return to our original

motivation, of speeding up the boot process. There are some

obvious targets: The cpu and clocks SYSINITs each spend

1 second spinning in order to calibrate clock frequencies; the

initialization of the atkbd and psm keyboard and mouse

drivers includes a total of 2–3 seconds, mostly spent on delays

which were once needed for ancient PS/2 hardware but are

unlikely to be necessary any longer; avoiding the need to

wait for USB devices to be probed before mounting ZFS

would save as much as 9 seconds on affected systems; and the

console output code used by _vprintf can be responsible

for an absurdly large amount of time — over 30% of the

total time spent booting on the EC2 instance we tested. We

expect that the ease of use of this framework — functions can

be instrumented by adding the TSENTER() and TSEXIT()

macros, and timestamps can be logged within functions via

a TSLINE() macro which records the source file and line

number — will prove useful to developers as they delve deeper

into the kernel code to further track down and fix boot time

performance problems.

We also hope that this work will prove useful to FreeBSD

developers working with non-x86 hardware; while they will

need to instrument their respective machine-dependent initial-

ization routines (since we only instrumented hammer_time),

the rest of the kernel should already be usefully instrumented

as a result of our work.

It would also be very interesting to see if this work can

be ported or otherwise reproduced on other BSD operating

systems. While NetBSD and OpenBSD do not have the

same SYSINIT and device probing/attaching mechanisms as

FreeBSD, we hope that the general concepts exhibited here

can be applied to instrumenting those kernels, and expect that

the visualization code will be applicable.

REFERENCES

[1] B. Gregg and J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac

OS X, and FreeBSD. Prentice Hall Professional, 2011.
[2] B. Gregg, “The flame graph,” Commun. ACM, vol. 59, no. 6, pp. 48–57,

May 2016. [Online]. Available: http://doi.acm.org/10.1145/2909476
[3] A. van de Ven, “scripts/bootgraph.pl,” in Linux kernel version 2.6.28.

Linus Torvalds, 2008.
[4] ——, “systemd-bootchart,” https://github.com/systemd/

systemd-bootchart.
[5] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and

implementation of the FreeBSD operating system. Pearson Education,
2014.


