
FreeBSD Portsnap

What (it is), Why (it was written), and How (it works)

Colin Percival
The FreeBSD Project

cperciva@FreeBSD.org

May 19, 2007

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org
cperciva@FreeBSD.org


FreeBSD Portsnap

A Case Study in Black Magic

Colin Percival
The FreeBSD Project

cperciva@FreeBSD.org

May 19, 2007

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org
cperciva@FreeBSD.org


Introduction to Portsnap

Portsnap is a system for securely and efficiently distributing
the FreeBSD Ports tree.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Introduction to Portsnap

Portsnap is a system for securely and efficiently distributing
the FreeBSD Ports tree.

Introduced in October 2004, added to the base system in
August 2005.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Introduction to Portsnap

Portsnap is a system for securely and efficiently distributing
the FreeBSD Ports tree.

Introduced in October 2004, added to the base system in
August 2005.

Present in all releases since FreeBSD 6.0-RELEASE,
5.5-RELEASE.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Introduction to Portsnap

Portsnap is a system for securely and efficiently distributing
the FreeBSD Ports tree.

Introduced in October 2004, added to the base system in
August 2005.

Present in all releases since FreeBSD 6.0-RELEASE,
5.5-RELEASE.

Now used on approximately 30,000 systems.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Introduction to Portsnap

Portsnap is a system for securely and efficiently distributing
the FreeBSD Ports tree.

Introduced in October 2004, added to the base system in
August 2005.

Present in all releases since FreeBSD 6.0-RELEASE,
5.5-RELEASE.

Now used on approximately 30,000 systems.

Yes, I will have some pretty graphs later.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A bird’s-eye view of Portsnap

Portsnap build code runs on hardware “owned” by the
FreeBSD Security Team.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A bird’s-eye view of Portsnap

Portsnap build code runs on hardware “owned” by the
FreeBSD Security Team.

Builds are uploaded via ssh to portsnap-master.freebsd.org.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A bird’s-eye view of Portsnap

Portsnap build code runs on hardware “owned” by the
FreeBSD Security Team.

Builds are uploaded via ssh to portsnap-master.freebsd.org.

Mirrors (3 of them, so far) update from
portsnap-master.freebsd.org.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A bird’s-eye view of Portsnap

Portsnap build code runs on hardware “owned” by the
FreeBSD Security Team.

Builds are uploaded via ssh to portsnap-master.freebsd.org.

Mirrors (3 of them, so far) update from
portsnap-master.freebsd.org.

Individual client systems update /var/db/portsnap from a
randomly selected mirror.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A bird’s-eye view of Portsnap

Portsnap build code runs on hardware “owned” by the
FreeBSD Security Team.

Builds are uploaded via ssh to portsnap-master.freebsd.org.

Mirrors (3 of them, so far) update from
portsnap-master.freebsd.org.

Individual client systems update /var/db/portsnap from a
randomly selected mirror.

The ports tree can be extracted or updated from
/var/db/portsnap.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Approximately a generalization of MX records.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Approximately a generalization of MX records.
Clients are expected to pick a server randomly based on the
specified priorities and weights.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Approximately a generalization of MX records.
Clients are expected to pick a server randomly based on the
specified priorities and weights.

http. tcp.portsnap.freebsd.org IN SRV 1 10 80

portsnap1

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Approximately a generalization of MX records.
Clients are expected to pick a server randomly based on the
specified priorities and weights.

http. tcp.portsnap.freebsd.org IN SRV 1 10 80

portsnap1

Portsnap runs over HTTP, and obeys the HTTP PROXY
environment variable.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #1: DNS SRV records

DNS SRV records (RFC 2782) provide a mechanism for
mapping a type of service to host name(s).

Approximately a generalization of MX records.
Clients are expected to pick a server randomly based on the
specified priorities and weights.

http. tcp.portsnap.freebsd.org IN SRV 1 10 80

portsnap1

Portsnap runs over HTTP, and obeys the HTTP PROXY
environment variable.

If HTTP PROXY is set, Portsnap uses
SHA256(HTTP PROXY) as a random number seed when
selecting a random mirror.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Updates are signed to prove that they are authentic.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Updates are signed to prove that they are authentic.

No need to trust CVSup mirrors!

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Updates are signed to prove that they are authentic.

No need to trust CVSup mirrors!

Until August 2006, FreeBSD Update was in the Ports tree.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Updates are signed to prove that they are authentic.

No need to trust CVSup mirrors!

Until August 2006, FreeBSD Update was in the Ports tree.
... which most people downloaded via CVSup.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


FreeBSD Update

FreeBSD Update is a system for building, distributing, and
applying binary security updates to the FreeBSD base system.

Introduced in April 2003, presented at BSDCon’03.

Updates are signed to prove that they are authentic.

No need to trust CVSup mirrors!

Until August 2006, FreeBSD Update was in the Ports tree.
... which most people downloaded via CVSup.

... Oops.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Secure CVS trees

Add a checksum file to each directory in the tree, containing

... the hashes of all the other files in the directory.

... the hashes of the checksum files in any (immediate)
subdirectories.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Secure CVS trees

Add a checksum file to each directory in the tree, containing

... the hashes of all the other files in the directory.

... the hashes of the checksum files in any (immediate)
subdirectories.

Sign the checksum file in the root directory.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Secure CVS trees

Add a checksum file to each directory in the tree, containing

... the hashes of all the other files in the directory.

... the hashes of the checksum files in any (immediate)
subdirectories.

Sign the checksum file in the root directory.

Each time a commit is done, automatically rebuild checksum
files going up to the root, and re-sign the root checksum file.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Secure CVS trees

Add a checksum file to each directory in the tree, containing

... the hashes of all the other files in the directory.

... the hashes of the checksum files in any (immediate)
subdirectories.

Sign the checksum file in the root directory.

Each time a commit is done, automatically rebuild checksum
files going up to the root, and re-sign the root checksum file.

I hope someone builds this some day. I didn’t have time.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A simpler approach

Instead of making the tree self-authenticating and using
existing mechanisms to distribute it, keep authentication out
of the tree and have a new utility which downloads and
verifies.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A simpler approach

Instead of making the tree self-authenticating and using
existing mechanisms to distribute it, keep authentication out
of the tree and have a new utility which downloads and
verifies.

Divide the tree into N independent pieces, and generate an
N-line index file containing the hashes of all the pieces.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A simpler approach

Instead of making the tree self-authenticating and using
existing mechanisms to distribute it, keep authentication out
of the tree and have a new utility which downloads and
verifies.

Divide the tree into N independent pieces, and generate an
N-line index file containing the hashes of all the pieces.

Distribute the N pieces, the index, and a signed hash of the
index as static files over HTTP.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


A simpler approach

Instead of making the tree self-authenticating and using
existing mechanisms to distribute it, keep authentication out
of the tree and have a new utility which downloads and
verifies.

Divide the tree into N independent pieces, and generate an
N-line index file containing the hashes of all the pieces.

Distribute the N pieces, the index, and a signed hash of the
index as static files over HTTP.

We don’t really need to invent a new protocol after all...

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Using static files over HTTP makes firewall/proxy traversal
easy.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Using static files over HTTP makes firewall/proxy traversal
easy.

Actually, squid manages to cause problems by not supporting
HTTP/1.1, but I think that can be worked around.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Using static files over HTTP makes firewall/proxy traversal
easy.

Actually, squid manages to cause problems by not supporting
HTTP/1.1, but I think that can be worked around.

Using static files (and a signature) provides end to end
security.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Using static files over HTTP makes firewall/proxy traversal
easy.

Actually, squid manages to cause problems by not supporting
HTTP/1.1, but I think that can be worked around.

Using static files (and a signature) provides end to end
security.

We don’t need to worry about the possibility of mirrors being
compromised.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #2: Static files

Serving static files is easy – choose your favourite HTTP
server.

HTTP servers are light-weight compared to more complicated
protocols like CVSup and rsync.

Using static files over HTTP makes firewall/proxy traversal
easy.

Actually, squid manages to cause problems by not supporting
HTTP/1.1, but I think that can be worked around.

Using static files (and a signature) provides end to end
security.

We don’t need to worry about the possibility of mirrors being
compromised.
We don’t need to worry about the possibility of an SSL
certificate being compromised.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

The larger N is, the larger the overhead costs (TCP, HTTP,
inodes, etc.) of handling many small files.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

The larger N is, the larger the overhead costs (TCP, HTTP,
inodes, etc.) of handling many small files.

The smaller N is, the larger the cost (bandwidth, CPU time)
of updating each piece.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

The larger N is, the larger the overhead costs (TCP, HTTP,
inodes, etc.) of handling many small files.

The smaller N is, the larger the cost (bandwidth, CPU time)
of updating each piece.

Asymptotically, we probably want N = O(
√

[size of tree]).

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

The larger N is, the larger the overhead costs (TCP, HTTP,
inodes, etc.) of handling many small files.

The smaller N is, the larger the cost (bandwidth, CPU time)
of updating each piece.

Asymptotically, we probably want N = O(
√

[size of tree]).

For a tree of ≈ 100 MB it’s reasonable for N to be a few
thousand.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Dividing up the ports tree

We want to divide the ports tree into N pieces.

The larger N is, the larger the overhead costs (TCP, HTTP,
inodes, etc.) of handling many small files.

The smaller N is, the larger the cost (bandwidth, CPU time)
of updating each piece.

Asymptotically, we probably want N = O(
√

[size of tree]).

For a tree of ≈ 100 MB it’s reasonable for N to be a few
thousand.

In Portsnap, the pieces are

/usr/ports/category/port
/usr/ports/category/file
/usr/ports/file

and each piece is stored as a tarball.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Most compressors explicitly use the first n bytes to predict the
value of the n + 1th byte.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Most compressors explicitly use the first n bytes to predict the
value of the n + 1th byte.

The central problem of efficient delta compression is to model
how files change.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Most compressors explicitly use the first n bytes to predict the
value of the n + 1th byte.

The central problem of efficient delta compression is to model
how files change.

Side note: Part of the reason bsdiff is so efficient is that it is
the first delta compressor designed with an awareness of byte
substitutions.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Most compressors explicitly use the first n bytes to predict the
value of the n + 1th byte.

The central problem of efficient delta compression is to model
how files change.

Side note: Part of the reason bsdiff is so efficient is that it is
the first delta compressor designed with an awareness of byte
substitutions.

Commits to the ports tree often modify several files, but
usually they are part of the same port.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #3: Understand how things change

The central problem of efficient data compression is to model
files.

Most compressors explicitly use the first n bytes to predict the
value of the n + 1th byte.

The central problem of efficient delta compression is to model
how files change.

Side note: Part of the reason bsdiff is so efficient is that it is
the first delta compressor designed with an awareness of byte
substitutions.

Commits to the ports tree often modify several files, but
usually they are part of the same port.

Dividing the tree into individual ports is a natural granuality
based on how the tree changes.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Reference by hash: ”ports/misc/bsdiff is stored in
01234567...89ABCDEF.tar and has SHA256 hash
01234567...89ABCDEF”.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Reference by hash: ”ports/misc/bsdiff is stored in
01234567...89ABCDEF.tar and has SHA256 hash
01234567...89ABCDEF”.

Don’t need to worry about naming collisions, since a strong
hash will never collide.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Reference by hash: ”ports/misc/bsdiff is stored in
01234567...89ABCDEF.tar and has SHA256 hash
01234567...89ABCDEF”.

Don’t need to worry about naming collisions, since a strong
hash will never collide.

Well, hopefully, at least.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Reference by hash: ”ports/misc/bsdiff is stored in
01234567...89ABCDEF.tar and has SHA256 hash
01234567...89ABCDEF”.

Don’t need to worry about naming collisions, since a strong
hash will never collide.

Well, hopefully, at least.

Each part of the tree is self-authenticating.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #4: Reference by hash

Traditional approach: ”ports/misc/bsdiff is stored in
misc bsdiff 123.tar and has SHA256 hash
01234567...89ABCDEF”.

Reference by hash: ”ports/misc/bsdiff is stored in
01234567...89ABCDEF.tar and has SHA256 hash
01234567...89ABCDEF”.

Don’t need to worry about naming collisions, since a strong
hash will never collide.

Well, hopefully, at least.

Each part of the tree is self-authenticating.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

This takes 10–30 minutes.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

This takes 10–30 minutes.
If someone can insert a trojan into misc/nobody-uses-this,
they can execute arbitrary code on any system which builds an
INDEX.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

This takes 10–30 minutes.
If someone can insert a trojan into misc/nobody-uses-this,
they can execute arbitrary code on any system which builds an
INDEX.

INDEX is built on the Portsnap buildbox and distributed to
client systems.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

This takes 10–30 minutes.
If someone can insert a trojan into misc/nobody-uses-this,
they can execute arbitrary code on any system which builds an
INDEX.

INDEX is built on the Portsnap buildbox and distributed to
client systems.

For security reasons, INDEX is built as a non-privileged user
inside a jail which contains a minimal FreeBSD world where all
filesystems are mounted either readonly or noexec.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Things get ugly: Distributing INDEX files

FreeBSD package tools use an INDEX file which summarizes
the ports tree.

Package name, version, directory, dependencies...

The INDEX file is generated by recursing into every Makefile
in the tree.

This takes 10–30 minutes.
If someone can insert a trojan into misc/nobody-uses-this,
they can execute arbitrary code on any system which builds an
INDEX.

INDEX is built on the Portsnap buildbox and distributed to
client systems.

For security reasons, INDEX is built as a non-privileged user
inside a jail which contains a minimal FreeBSD world where all
filesystems are mounted either readonly or noexec.

Hopefully this is good enough...

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Saving bandwidth

Instead of downloading complete files, Portsnap downloads
patches against older versions whenever possible.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Saving bandwidth

Instead of downloading complete files, Portsnap downloads
patches against older versions whenever possible.

Binary patches are used for the component tarballs.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Saving bandwidth

Instead of downloading complete files, Portsnap downloads
patches against older versions whenever possible.

Binary patches are used for the component tarballs.
A hacked-up textual patch format is used for the index of
components and for the ports INDEX file.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Saving bandwidth

Instead of downloading complete files, Portsnap downloads
patches against older versions whenever possible.

Binary patches are used for the component tarballs.
A hacked-up textual patch format is used for the index of
components and for the ports INDEX file.

For a typical 58 hour window of updates in 2005, CVSup used
6388kB of bandwidth, while portsnap only used 370kB.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Saving bandwidth

Instead of downloading complete files, Portsnap downloads
patches against older versions whenever possible.

Binary patches are used for the component tarballs.
A hacked-up textual patch format is used for the index of
components and for the ports INDEX file.

For a typical 58 hour window of updates in 2005, CVSup used
6388kB of bandwidth, while portsnap only used 370kB.

When very little has changed in the tree, CVSup spends most
of its time/bandwidth listing files and deciding that they
haven’t changed.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.
Applying a series of N patches, one by one, is both
complicated and slow.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.
Applying a series of N patches, one by one, is both
complicated and slow.

Opportunistic patching: Build some patches, but not all of
them.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.
Applying a series of N patches, one by one, is both
complicated and slow.

Opportunistic patching: Build some patches, but not all of
them.

Client systems try to fetch a patch, but fall back to fetching a
complete file if the patch isn’t available.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.
Applying a series of N patches, one by one, is both
complicated and slow.

Opportunistic patching: Build some patches, but not all of
them.

Client systems try to fetch a patch, but fall back to fetching a
complete file if the patch isn’t available.
By building a small number of patches, we can ensure that
most systems will be using patches most of the time.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #5: Opportunistic patching

Problem: If you have N versions of a file, there are O(N2)
pairs between which to build patches.

Building O(N2) patches takes a long time.
Applying a series of N patches, one by one, is both
complicated and slow.

Opportunistic patching: Build some patches, but not all of
them.

Client systems try to fetch a patch, but fall back to fetching a
complete file if the patch isn’t available.
By building a small number of patches, we can ensure that
most systems will be using patches most of the time.
Right now, patches are always for Portsnap on systems which
update at least once a week.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Portsnap updating statistics

0

2×104

4×104

6×104

8×104

105

hour day week month

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #6: Pipelined HTTP

Pipelined HTTP can easily speed up fetching small files by an
order of magnitude.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #6: Pipelined HTTP

Pipelined HTTP can easily speed up fetching small files by an
order of magnitude.

When Portsnap is fetching patches (typical size 500 bytes) the
speedup can be over a factor of 100.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #6: Pipelined HTTP

Pipelined HTTP can easily speed up fetching small files by an
order of magnitude.

When Portsnap is fetching patches (typical size 500 bytes) the
speedup can be over a factor of 100.

Not really black magic at all — pipelined HTTP is something
which everybody should be using.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #6: Pipelined HTTP

Pipelined HTTP can easily speed up fetching small files by an
order of magnitude.

When Portsnap is fetching patches (typical size 500 bytes) the
speedup can be over a factor of 100.

Not really black magic at all — pipelined HTTP is something
which everybody should be using.

Unfortunately, shockingly few people do.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Black Magic #6: Pipelined HTTP

Pipelined HTTP can easily speed up fetching small files by an
order of magnitude.

When Portsnap is fetching patches (typical size 500 bytes) the
speedup can be over a factor of 100.

Not really black magic at all — pipelined HTTP is something
which everybody should be using.

Unfortunately, shockingly few people do.
I had to write my own command-line pipelined HTTP client as
part of Portsnap because I couldn’t find one anywhere.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Spyware!

PRIVACY NOTICE

As an unavoidable part of its operation, a machine running
portsnap will make its public IP address and the list of files it
fetches available to the server from which it fetches updates. Using
these it may be possible to recognize a machine over an extended
period of time, determine when it is updated, and identify which
portions of the FreeBSD ports tree, if any, are being ignored using
”REFUSE” directives in portsnap.conf. In addition, the FreeBSD
release level is transmitted to the server.

Statistical data generated from information collected in this
manner may be published, but only in aggregate and after
anonymizing the individual systems.

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Portsnap usage

7.0

6.2

6.1

6.0
5.55.41.11.00.9.50.9.40.9.30.9.20.9.10.9

01/04/05 01/10/05 01/04/06 01/10/06 01/04/07

0

10

20

30

Weekly portsnap usage by version

Weeks of
updates
fetched
(×103)

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Portsnap usage on FreeBSD 6.2

6.2.STABLE

6.2.R.p4
6.2.R.p3
6.2.R.p2
6.2.R.p1

6.2.R

6.2.RC2.p16.2.RC26.2.RC1.p26.2.RC1.p16.2.RC16.2.BETA3.p16.2.BETA36.2.BETA26.2.BETA1.p46.2.BETA1.p36.2.BETA1.p26.2.BETA1.p16.2.BETA16.2.PRE

01/10/06 01/12/06 01/02/07 01/04/07

0

2

4

6

8

10

12

Weekly portsnap usage by version

Weeks of
updates
fetched
(×103)

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org


Questions?

Colin Percival The FreeBSD Project cperciva@FreeBSD.org FreeBSD Portsnap

cperciva@FreeBSD.org

